Question:
Then-queens puzzle is the problem of placingnqueens on ann*nchessboard such that no two queens attack each other.
Given an integern, return all distinct solutions to then-queens puzzle.
Each solution contains a distinct board configuration of then-queens' placement, where'Q'
and'.'
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
Anwser 1:
class Solution { public: bool check(int row, int* colArray) { for (int i = 0; i < row; ++i) { int diff = abs(colArray[i] - colArray[row]); // in a col if (diff == 0 || diff == row - i) { // int a row or line return false; } } return true; } void placeQueens(int row, int n, int &count, int* colArray, vector< vector<string> > &ret2) { if (row == n) { ++count; vector<string> tmpRet; for(int i = 0; i < row; i++){ string str(n, '.'); str[colArray[i]] = 'Q'; tmpRet.push_back(str); } ret2.push_back(tmpRet); return; } for (int col = 0; col < n; ++col) { // in 0 row, test n col colArray[row] = col; if (check(row, colArray)){ placeQueens(row+1, n, count, colArray, ret2); // test other rows } } } vector<vector<string> > solveNQueens(int n) { // Start typing your C/C++ solution below // DO NOT write int main() function int *colArray = new int[n]; int count = 0; vector< vector<string> > ret; placeQueens(0, n, count, colArray, ret); return ret; } };