uva 270 - Lining Up

题目中特别说明注意高效,估计简单的O(n^3)枚举法要超时,试了下果然。

不过这个题目以前在上普林斯顿的algorithms里有个大程跟这个95%相似的问题,所以我一下子就想到了优化的解法,复杂度是O( (n^2)logn )。

优化解法:对于每个点,按照其他点相对于这个点的斜率排序,在排序的序列中找寻最长的斜率相同的子串长度,其中最费时的是排序,所以总体的复杂度就是n 乘以 nlogn。

 

 

#include<stdio.h>
#include<stdlib.h>
#include<float.h>
#include<string.h>

#define MAX 700+5

typedef struct Point {
	int x;
	int y;
} Point;

Point points[MAX];
Point cur;


double slope(Point*a) {
	int x0 = cur.x;
	int y0 = cur.y;
	int x1 = a[0].x;
	int y1 = a[0].y;
	if (x0 == x1 && y0 == y1)
		return -DBL_MAX ;
	else if (x0 == x1)
		return DBL_MAX ;
	else if (y0 == y1)
		return 0;
	else
		return 1.0 * (y1 - y0) / (x1 - x0);
}

int cmp(const void*a, const void*b) {
	Point*aa = (Point*) a;
	Point*bb = (Point*) b;
	double sa = slope(aa);
	double sb = slope(bb);

	if (sa < sb)
		return -1;
	else if (sa > sb)
		return 1;
	else
		return 0;

}

int calcu2(int n) {
	int max = 2;
	int i;
	for (i = 0; i < n; i++) {
		int num = 2;
		memcpy(&cur, &points[i], sizeof(Point));
		qsort(points, n, sizeof(points[0]), cmp);
		int j;
		double oldSlope = 0;
		for (j = 0; j < n; j++) {
			double curSlope = slope(&points[j]);
			if (curSlope == oldSlope) {
				num++;
				if (num > max)
					max = num;
			} else {
				oldSlope = curSlope;
				num = 2;
			}
		}

	}

	return max;

}

int main() {
			int cases;
			int len;
			scanf("%d", &cases);
			getchar();
			getchar();
			while (cases--) {
				int i = 0;
				char tmp[200];
				while (1) {
					if(gets(tmp)==NULL)
					break;
					if (tmp[0] == 0)
					break;
					else {
						sscanf(tmp, "%d%d", &points[i].x, &points[i].y);
						i++;
					}
				}
				len = calcu2(i);
				printf("%d\n", len);
				if (cases)
				printf("\n");
			}
			return 0;
		}

 

你可能感兴趣的:(uva 270 - Lining Up)