优化变成了忧患:String.split引发的“内存泄露”

一直赞叹Sun对待技术的严谨和优雅(bless Sun)。Sun JDK中Java库的源代码,连注释都清清楚楚、规规范范,javadoc注解的使用也一丝不苟,读起来很熟舒服。因此,在日常工作和学习中,经常读读 Java库的源代码,不亦乐乎?如果遇到诡异问题,源代码的帮助就更大了。

闲话少说,回归正题。这几天,一直在为Java的“内存泄露”问题纠结。Java应用程序占用的内存在不断的、有规律的上涨,最终超过了监控阈值。 福尔摩斯不得不出手了!

说起Java的内存泄露,其实定义不是那么明确。首先,如果JVM没有bug,那么理论上是不会出现“无法回收的堆空间”,也就是说C/C++中的 那种内存泄露在Java中不存在的。其次,如果由于Java程序一直持有某个对象的引用,但是从程序逻辑上看,这个对象再也不会被用到了,那么我们可以认 为这个对象被泄露了。如果这样的对象数量很多,那么很明显,大量的内存空间就被泄露(“浪费”更准确一些)了。

不过,本文要说的内存泄露,并不属于上述原因,因此打上了引号。其具体原因,确实出乎意料。欲知详情,请看下面讲解。

分析内存泄露的一般步骤

 

如果发现Java应用程序占用的内存出现了泄露的迹象,那么我们一般采用下面的步骤分析

  1. 把Java应用程序使用的heap dump下来
  2. 使用Java heap分析工具,找出内存占用超出预期(一般是因为数量太多)的嫌疑对象
  3. 必要时,需要分析嫌疑对象和其他对象的引用关系。
  4. 查看程序的源代码,找出嫌疑对象数量过多的原因。

dump heap

如果Java应用程序出现了内存泄露,千万别着急着把应用杀掉,而是要保存现场。如果是互联网应用,可以把流量切到其他服务器。保存现场的目的就是 为了把运行中JVM的heap dump下来。

JDK自带的jmap工具,可以做这件事情。它的执行方法是:

jmap -dump:format=b,file=heap.bin <pid>

format=b的含义是,dump出来的文件时二进制格式。

file-heap.bin的含义是,dump出来的文件名是heap.bin。

<pid>就是JVM的进程号。

(在linux下)先执行ps aux | grep java,找到JVM的pid;然后再执行jmap -dump:format=b,file=heap.bin <pid>,得到heap dump文件。

analyze heap

将二进制的heap dump文件解析成human-readable的信息,自然是需要专业工具的帮助,这里推荐Memory Analyzer

Memory Analyzer,简称MAT,是Eclipse基金会的开源项目,由SAP和IBM捐助。巨头公司出品的软件还是很中用的,MAT可以分析包含数亿级对 象的heap、快速计算每个对象占用的内存大小、对象之间的引用关系、自动检测内存泄露的嫌疑对象,功能强大,而且界面友好易用。

MAT的界面基于Eclipse开发,以两种形式发布:Eclipse插件和Eclipe RCP。MAT的分析结果以图片和报表的形式提供,一目了然。总之个人还是非常喜欢这个工具的。下面先贴两张官方的screenshots:

优化变成了忧患:String.split引发的“内存泄露”_第1张图片

优化变成了忧患:String.split引发的“内存泄露”_第2张图片

言归正传,我用MAT打开了heap.bin,很容易看出,char[]的数量出其意料的多,占用90%以上的内存 。一般来说,char[]在JVM确实会占用很多内存,数量也非常多,因为String对象以char[]作为内部存储。但是这次的char[]太贪婪 了,仔细一观察,发现有数万计的char[],每个都占用数百K的内存 。这个现象说明,Java程序保存了数以万计的大String对象 。结合程序的逻辑,这个是不应该的,肯定在某个地方出了问题。

顺藤摸瓜

在可疑的char[]中,任意挑了一个,使用Path To GC Root功能,找到该char[]的引用路径,发现String对象是被一个HashMap中引用的 。这个也是意料中的事情,Java的内存泄露多半是因为对象被遗留在全局的HashMap中得不到释放。不过,该HashMap被用作一个缓存,设置了缓 存条目的阈值,导达到阈值后会自动淘汰。从这个逻辑分析,应该不会出现内存泄露的。虽然缓存中的String对象已经达到数万计,但仍然没有达到预先设置 的阈值(阈值设置地比较大,因为当时预估String对象都比较小)。

但是,另一个问题引起了我的注意:为什么缓存的String对象如此巨大?内部char[]的长度达数百K。虽然缓存中的String对象数 量还没有达到阈值,但是String对象大小远远超出了我们的预期,最终导致内存被大量消耗,形成内存泄露的迹象(准确说应该是内存消耗过多)

就这个问题进一步顺藤摸瓜,看看String大对象是如何被放到HashMap中的。通过查看程序的源代码,我发现,确实有String大对象,不 过并没有把String大对象放到HashMap中,而是把String大对象进行split(调用String.split方法),然后将split出 来的String小对象放到HashMap中 了。

这就奇怪了,放到HashMap中明明是split之后的String小对象,怎么会占用那么大空间呢?难道是String类的split方法有问 题?

查看代码

带着上述疑问,我查阅了Sun JDK6中String类的代码,主要是是split方法的实现:

  1. public   
  2. String[] split(String regex, int limit) {  
  3.     return Pattern.compile(regex).split(this, limit);  
  4. }  

 

可以看出,Stirng.split方法调用了Pattern.split方法。继续看Pattern.split方法的代码:

  1. public   
  2. String[] split(CharSequence input, int limit) {  
  3.         int index = 0;  
  4.         boolean matchLimited = limit > 0;  
  5.         ArrayList<String> matchList = new   
  6. ArrayList<String>();  
  7.         Matcher m = matcher(input);  
  8.         // Add segments before each match found  
  9.         while(m.find()) {  
  10.             if (!matchLimited || matchList.size() < limit - 1) {  
  11.                 String match = input.subSequence(index,   
  12. m.start()).toString();  
  13.                 matchList.add(match);  
  14.                 index = m.end();  
  15.             } else if (matchList.size() == limit - 1) { // last one  
  16.                 String match = input.subSequence(index,  
  17.                                                    
  18. input.length()).toString();  
  19.                 matchList.add(match);  
  20.                 index = m.end();  
  21.             }  
  22.         }  
  23.         // If no match was found, return this  
  24.         if (index == 0)  
  25.             return new String[] {input.toString()};  
  26.         // Add remaining segment  
  27.         if (!matchLimited || matchList.size() < limit)  
  28.             matchList.add(input.subSequence(index,   
  29. input.length()).toString());  
  30.         // Construct result  
  31.         int resultSize = matchList.size();  
  32.         if (limit == 0)  
  33.             while (resultSize > 0 &&   
  34. matchList.get(resultSize-1).equals(""))  
  35.                 resultSize--;  
  36.         String[] result = new String[resultSize];  
  37.         return matchList.subList(0, resultSize).toArray(result);  
  38.     }  

 

注意看第11行:Stirng match = input.subSequence(intdex, m.start()).toString();

这里的match就是split出来的String小对象,它其实是String大对象subSequence的结果。继续看 String.subSequence的代码:

  1. public   
  2. CharSequence subSequence(int beginIndex, int endIndex) {  
  3.         return this.substring(beginIndex, endIndex);  
  4. }  

 

String.subSequence有调用了String.subString,继续看:

  1. public String   
  2. substring(int beginIndex, int endIndex) {  
  3.     if (beginIndex < 0) {  
  4.         throw new StringIndexOutOfBoundsException(beginIndex);  
  5.     }  
  6.     if (endIndex > count) {  
  7.         throw new StringIndexOutOfBoundsException(endIndex);  
  8.     }  
  9.     if (beginIndex > endIndex) {  
  10.         throw new StringIndexOutOfBoundsException(endIndex - beginIndex);  
  11.     }  
  12.     return ((beginIndex == 0) && (endIndex == count)) ? this :  
  13.         new String(offset + beginIndex, endIndex - beginIndex, value);  
  14.     }  

 

看第12、13行,我们终于看出眉目,如果subString的内容就是完整的原字符串,那么返回原String对象;否则,就会创建一个新的 String对象,但是这个String对象貌似使用了原String对象的char[]。我们通过String的构造函数确认这一点:

  1. // Package   
  2. private constructor which shares value array for speed.  
  3.     String(int offset, int count, char value[]) {  
  4.     this.value = value;  
  5.     this.offset = offset;  
  6.     this.count = count;  
  7.     }  

 

为了避免内存拷贝、加快速度,Sun JDK直接复用了原String对象的char[],偏移量和长度来标识不同的字符串内容。也就是说,subString 出的来String小对象仍然会指向原String大对象的char[],split也是同样的情况 。这就解释了,为什么HashMap中String对象的char[]都那么大。

原因解释

其实上一节已经分析出了原因,这一节再整理一下:

  1. 程序从每个请求中得到一个String大对象,该对象内部char[]的长度达数百K。
  2. 程序对String大对象做split,将split得到的String小对象放到HashMap中,用作缓存。
  3. Sun JDK6对String.split方法做了优化,split出来的Stirng对象直接使用原String对象的char[]
  4. HashMap中的每个String对象其实都指向了一个巨大的char[]
  5. HashMap的上限是万级的,因此被缓存的Sting对象的总大小=万*百K=G级。
  6. G级的内存被缓存占用了,大量的内存被浪费,造成内存泄露的迹象。

解决方案

原因找到了,解决方案也就有了。split是要用的,但是我们不要把split出来的String对象直接放到HashMap中,而是调用一下 String的拷贝构造函数String(String original),这个构造函数是安全的,具体可以看代码:

  1.     /** 
  2.      * Initializes a newly created {@code String} object so that it  
  3. represents 
  4.      * the same sequence of characters as the argument; in other words,  
  5. the 
  6.      * newly created string is a copy of the argument string. Unless an 
  7.      * explicit copy of {@code original} is needed, use of this  
  8. constructor is 
  9.      * unnecessary since Strings are immutable. 
  10.      * 
  11.      * @param  original 
  12.      *         A {@code String} 
  13.      */  
  14.     public String(String original) {  
  15.     int size = original.count;  
  16.     char[] originalValue = original.value;  
  17.     char[] v;  
  18.     if (originalValue.length > size) {  
  19.         // The array representing the String is bigger than the new  
  20.         // String itself.  Perhaps this constructor is being called  
  21.         // in order to trim the baggage, so make a copy of the array.  
  22.             int off = original.offset;  
  23.             v = Arrays.copyOfRange(originalValue, off, off+size);  
  24.     } else {  
  25.         // The array representing the String is the same  
  26.         // size as the String, so no point in making a copy.  
  27.         v = originalValue;  
  28.     }  
  29.     this.offset = 0;  
  30.     this.count = size;  
  31.     this.value = v;  
  32.     }  

 

只是,new String(string)的代码很怪异,囧。或许,subString和split应该提供一个选项,让程序员控制是否复用String对象的 char[]。

是否是Bug

 

虽然,subString和split的实现造成了现在的问题,但是这能否算String类的bug呢?个人觉得不好说。因为这样的优化是比较合理 的,subString和spit的结果肯定是原字符串的连续子序列。只能说,String不仅仅是一个核心类,它对于JVM来说是与原始类型同等重要的 类型。

JDK实现对String做各种可能的优化都是可以理解的。但是优化带来了忧患,我们程序员足够了解他们,才能用好他们。

你可能感兴趣的:(String)