这个工作主要是根据网友的经验资料来学习移植的。总的来说需要下面几个参考资料。
ARM Cortex-m3权威指南
官方移植文档资料
网友移植成功经验资料
这三种资料在我的资源上传里面都能找到。
我在官网上下的是官方已经移植好的到STM32F103评估板的资料,很多部分已经实现了,所以需要改动的地方很少,不同的地方可以参考第三种网友移植成功经验资料,里面有详细说明。我下的是ucosii2.86版本。
下面说说移植过程:
移植主要涉及到两个源文件,os_cpu_c.c和os_cpu_a.asm,os_cpu.h。其他文件是ucosii核心文件,不需要修改。还有两个配置文件app_cfg.h和os_cfg.h。
整个文件框架构成图如下,用的是IAR。
这就是对照上面的说明而设置的目录结构。
下面谈主要移植的部分。主要集中在os_cpu_a.asm这个文件中,os_cpu.h主要涉及到一些宏的配置。os_cpu_c.c中主要有一个函数必须写出,就是堆栈初始化函数。
先说os_cpu.h中需要注意的地方。
下面是开关中断的宏
#define OS_CRITICAL_METHOD 3 #if OS_CRITICAL_METHOD == 3 #define OS_ENTER_CRITICAL() {cpu_sr = OS_CPU_SR_Save();} #define OS_EXIT_CRITICAL() {OS_CPU_SR_Restore(cpu_sr);} #endif
CM3堆栈方向高到底递减,设置为1,还有一个任务切换的宏。
#define OS_STK_GROWTH 1 /* Stack grows from HIGH to LOW memory on ARM */ #define OS_TASK_SW() OSCtxSw()
还有几个关于systick的函数需要注释掉,下面的os_cpu_c.c会说道原因。
// /* See OS_CPU_C.C */ //void OS_CPU_SysTickHandler(void); //void OS_CPU_SysTickInit(void); // // /* See BSP.C */ //INT32U OS_CPU_SysTickClkFreq(void);
看os_cpu_c.c。
里面有些函数是钩子函数,根据需要写。如果不需要可以不写。
下面是堆栈初始化函数。
/* ********************************************************************************************************* * INITIALIZE A TASK'S STACK * * Description: This function is called by either OSTaskCreate() or OSTaskCreateExt() to initialize the * stack frame of the task being created. This function is highly processor specific. * * Arguments : task is a pointer to the task code * * p_arg is a pointer to a user supplied data area that will be passed to the task * when the task first executes. * * ptos is a pointer to the top of stack. It is assumed that 'ptos' points to * a 'free' entry on the task stack. If OS_STK_GROWTH is set to 1 then * 'ptos' will contain the HIGHEST valid address of the stack. Similarly, if * OS_STK_GROWTH is set to 0, the 'ptos' will contains the LOWEST valid address * of the stack. * * opt specifies options that can be used to alter the behavior of OSTaskStkInit(). * (see uCOS_II.H for OS_TASK_OPT_xxx). * * Returns : Always returns the location of the new top-of-stack once the processor registers have * been placed on the stack in the proper order. * * Note(s) : 1) Interrupts are enabled when your task starts executing. * 2) All tasks run in Thread mode, using process stack. ********************************************************************************************************* */ OS_STK *OSTaskStkInit (void (*task)(void *p_arg), void *p_arg, OS_STK *ptos, INT16U opt) { OS_STK *stk; (void)opt; /* 'opt' is not used, prevent warning */ stk = ptos; /* Load stack pointer */ /* Registers stacked as if auto-saved on exception */ *(stk) = (INT32U)0x01000000L; /* xPSR */ *(--stk) = (INT32U)task; /* Entry Point */ *(--stk) = (INT32U)0xFFFFFFFEL; /* R14 (LR) (init value will cause fault if ever used)*/ *(--stk) = (INT32U)0x12121212L; /* R12 */ *(--stk) = (INT32U)0x03030303L; /* R3 */ *(--stk) = (INT32U)0x02020202L; /* R2 */ *(--stk) = (INT32U)0x01010101L; /* R1 */ *(--stk) = (INT32U)p_arg; /* R0 : argument */ /* Remaining registers saved on process stack */ *(--stk) = (INT32U)0x11111111L; /* R11 */ *(--stk) = (INT32U)0x10101010L; /* R10 */ *(--stk) = (INT32U)0x09090909L; /* R9 */ *(--stk) = (INT32U)0x08080808L; /* R8 */ *(--stk) = (INT32U)0x07070707L; /* R7 */ *(--stk) = (INT32U)0x06060606L; /* R6 */ *(--stk) = (INT32U)0x05050505L; /* R5 */ *(--stk) = (INT32U)0x04040404L; /* R4 */ return (stk); }
因为CM3支持的堆栈地址是从高到低递减的,所以里面都是--。而且CM3中断自动入栈顺序为xPSR,PC,R14,R12,R3~R0,这个可以参考CM3权威指南。所以放在前面。后面R11~R4需要我们手动入栈。最后返回栈顶指针。
OS_CPU_C.c中还有一些东西需要我们注释掉,因为官方的资料是根据评估板来写的,如果移植到我们有STM32固件库的平台上,则需要做些改变,这是参考网友移植经验知道的。这些需要注释掉的东西主要是跟systic这个定时器有关。
下面是需要注释掉的地方。
//void OS_CPU_SysTickInit (void) //{ // INT32U cnts; // // // cnts = OS_CPU_SysTickClkFreq() / OS_TICKS_PER_SEC; // // OS_CPU_CM3_NVIC_ST_RELOAD = (cnts - 1); // /* Enable timer. */ // OS_CPU_CM3_NVIC_ST_CTRL |= OS_CPU_CM3_NVIC_ST_CTRL_CLK_SRC | OS_CPU_CM3_NVIC_ST_CTRL_ENABLE; // /* Enable timer interrupt. */ // OS_CPU_CM3_NVIC_ST_CTRL |= OS_CPU_CM3_NVIC_ST_CTRL_INTEN; //}
//void OS_CPU_SysTickHandler (void) //{ // OS_CPU_SR cpu_sr; // // // OS_ENTER_CRITICAL(); /* Tell uC/OS-II that we are starting an ISR */ // OSIntNesting++; // OS_EXIT_CRITICAL(); // // OSTimeTick(); /* Call uC/OS-II's OSTimeTick() */ // // OSIntExit(); /* Tell uC/OS-II that we are leaving the ISR */ //}
//#define OS_CPU_CM3_NVIC_ST_CTRL (*((volatile INT32U *)0xE000E010)) /* SysTick Ctrl & Status Reg. */ //#define OS_CPU_CM3_NVIC_ST_RELOAD (*((volatile INT32U *)0xE000E014)) /* SysTick Reload Value Reg. */ //#define OS_CPU_CM3_NVIC_ST_CURRENT (*((volatile INT32U *)0xE000E018)) /* SysTick Current Value Reg. */ //#define OS_CPU_CM3_NVIC_ST_CAL (*((volatile INT32U *)0xE000E01C)) /* SysTick Cal Value Reg. */ // //#define OS_CPU_CM3_NVIC_ST_CTRL_COUNT 0x00010000 /* Count flag. */ //#define OS_CPU_CM3_NVIC_ST_CTRL_CLK_SRC 0x00000004 /* Clock Source. */ //#define OS_CPU_CM3_NVIC_ST_CTRL_INTEN 0x00000002 /* Interrupt enable. */ //#define OS_CPU_CM3_NVIC_ST_CTRL_ENABLE 0x00000001 /* Counter mode. */
os_cpu.c.c中需要注意到的地方差不多就是这些了。
下面是os_cpu_a.asm.这里面的东西最多了,也相对难理解,这就需要仔细看CM3权威指南这个资料了。
这是上面开关中断宏的汇编语言实现。
OS_CPU_SR_Save MRS R0, PRIMASK ; Set prio int mask to mask all (except faults) CPSID I BX LR OS_CPU_SR_Restore MSR PRIMASK, R0 BX LR
启动最高优先级函数,只调用一次,在OSStart()中被调用。
;******************************************************************************************************** ; START MULTITASKING ; void OSStartHighRdy(void) ; ; Note(s) : 1) This function triggers a PendSV exception (essentially, causes a context switch) to cause ; the first task to start. ; ; 2) OSStartHighRdy() MUST: ; a) Setup PendSV exception priority to lowest; ; b) Set initial PSP to 0, to tell context switcher this is first run; ; c) Set OSRunning to TRUE; ; d) Trigger PendSV exception; ; e) Enable interrupts (tasks will run with interrupts enabled). ;******************************************************************************************************** OSStartHighRdy LDR R0, =NVIC_SYSPRI14 ; Set the PendSV exception priority LDR R1, =NVIC_PENDSV_PRI STRB R1, [R0] MOVS R0, #0 ; Set the PSP to 0 for initial context switch call MSR PSP, R0 LDR R0, =OSRunning ; OSRunning = TRUE MOVS R1, #1 STRB R1, [R0] LDR R0, =NVIC_INT_CTRL ; Trigger the PendSV exception (causes context switch) LDR R1, =NVIC_PENDSVSET STR R1, [R0] CPSIE I ; Enable interrupts at processor level OSStartHang B OSStartHang ; Should never get here
主要是手动悬起PendSV中断,设置OSRunning为1,然后开启中断之后好进入PendSV中断处理函数中进行任务切换,开始运行ucosii。PendSV这个是需要掌握的,才能理解CM3是如何实现操作系统的管理的。
下面是两个任务切换函数,一个是任务级间切换,一个是中断与任务间切换,虽然代码相同,但意义不同,这主要就跟上面说道的PendSV中断有关了。因为这个中断的存在,我们的任务切换中实现的主要工作就是触发PendSV中断,让这个中断去处理任务切换相关细节。
;******************************************************************************************************** ; PERFORM A CONTEXT SWITCH (From task level) ; void OSCtxSw(void) ; ; Note(s) : 1) OSCtxSw() is called when OS wants to perform a task context switch. This function ; triggers the PendSV exception which is where the real work is done. ;******************************************************************************************************** OSCtxSw LDR R0, =NVIC_INT_CTRL ; Trigger the PendSV exception (causes context switch) LDR R1, =NVIC_PENDSVSET STR R1, [R0] BX LR ;******************************************************************************************************** ; PERFORM A CONTEXT SWITCH (From interrupt level) ; void OSIntCtxSw(void) ; ; Notes: 1) OSIntCtxSw() is called by OSIntExit() when it determines a context switch is needed as ; the result of an interrupt. This function simply triggers a PendSV exception which will ; be handled when there are no more interrupts active and interrupts are enabled. ;******************************************************************************************************** OSIntCtxSw LDR R0, =NVIC_INT_CTRL ; Trigger the PendSV exception (causes context switch) LDR R1, =NVIC_PENDSVSET STR R1, [R0] BX LR
下面就是非常重要的PendSV中断处理函数了。
;******************************************************************************************************** ; HANDLE PendSV EXCEPTION ; void OS_CPU_PendSVHandler(void) ; ; Note(s) : 1) PendSV is used to cause a context switch. This is a recommended method for performing ; context switches with Cortex-M3. This is because the Cortex-M3 auto-saves half of the ; processor context on any exception, and restores same on return from exception. So only ; saving of R4-R11 is required and fixing up the stack pointers. Using the PendSV exception ; this way means that context saving and restoring is identical whether it is initiated from ; a thread or occurs due to an interrupt or exception. ; ; 2) Pseudo-code is: ; a) Get the process SP, if 0 then skip (goto d) the saving part (first context switch); ; b) Save remaining regs r4-r11 on process stack; ; c) Save the process SP in its TCB, OSTCBCur->OSTCBStkPtr = SP; ; d) Call OSTaskSwHook(); ; e) Get current high priority, OSPrioCur = OSPrioHighRdy; ; f) Get current ready thread TCB, OSTCBCur = OSTCBHighRdy; ; g) Get new process SP from TCB, SP = OSTCBHighRdy->OSTCBStkPtr; ; h) Restore R4-R11 from new process stack; ; i) Perform exception return which will restore remaining context. ; ; 3) On entry into PendSV handler: ; a) The following have been saved on the process stack (by processor): ; xPSR, PC, LR, R12, R0-R3 ; b) Processor mode is switched to Handler mode (from Thread mode) ; c) Stack is Main stack (switched from Process stack) ; d) OSTCBCur points to the OS_TCB of the task to suspend ; OSTCBHighRdy points to the OS_TCB of the task to resume ; ; 4) Since PendSV is set to lowest priority in the system (by OSStartHighRdy() above), we ; know that it will only be run when no other exception or interrupt is active, and ; therefore safe to assume that context being switched out was using the process stack (PSP). ;******************************************************************************************************** OS_CPU_PendSVHandler CPSID I ; Prevent interruption during context switch MRS R0, PSP ; PSP is process stack pointer CBZ R0, OS_CPU_PendSVHandler_nosave ; Skip register save the first time SUBS R0, R0, #0x20 ; Save remaining regs r4-11 on process stack STM R0, {R4-R11} LDR R1, =OSTCBCur ; OSTCBCur->OSTCBStkPtr = SP; LDR R1, [R1] STR R0, [R1] ; R0 is SP of process being switched out ; At this point, entire context of process has been saved OS_CPU_PendSVHandler_nosave PUSH {R14} ; Save LR exc_return value LDR R0, =OSTaskSwHook ; OSTaskSwHook(); BLX R0 POP {R14} LDR R0, =OSPrioCur ; OSPrioCur = OSPrioHighRdy; LDR R1, =OSPrioHighRdy LDRB R2, [R1] STRB R2, [R0] LDR R0, =OSTCBCur ; OSTCBCur = OSTCBHighRdy; LDR R1, =OSTCBHighRdy LDR R2, [R1] STR R2, [R0] LDR R0, [R2] ; R0 is new process SP; SP = OSTCBHighRdy->OSTCBStkPtr; LDM R0, {R4-R11} ; Restore r4-11 from new process stack ADDS R0, R0, #0x20 MSR PSP, R0 ; Load PSP with new process SP ORR LR, LR, #0x04 ; Ensure exception return uses process stack CPSIE I BX LR ; Exception return will restore remaining context END
下面的说的就是上面忽略的部分systick,作为操作系统的心脏,我们需要自己来组织这个中断。
在STM32库中的终端处理文件stm32f10x_it.c中有个Systick_Handler()函数,在里面添加处理。
/** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { OSIntEnter(); OSTimeTick(); OSIntExit(); }
在主函数main.c中添加systick初始化函数
static void Systick_init(void) { RCC_ClocksTypeDef rcc_clocks; RCC_GetClocksFreq(&rcc_clocks); SysTick_Config(rcc_clocks.HCLK_Frequency / OS_TICKS_PER_SEC); }
最后还有一个需要改动的就是要把STM32启动文件中的所有PendSV_Handler替换成OS_CPU_ PendSVHandler,因为UCOS默认移植文件中使用的是OS_CPU_ PendSVHandler。