这里是另一个ROT13 server的异步实现。这次,它使用libevent 2 来替代select。注意fd_sets已经不再使用,取而代之的是: 我们使用一个event_base结构关联或者取消关联事件,它内部实现了select、poll、epoll、kqueue等。
Example: A low-level ROT13 server with Libevent
/* For sockaddr_in */ #include <netinet/in.h> /* For socket functions */ #include <sys/socket.h> /* For fcntl */ #include <fcntl.h> #include <event2/event.h> #include <assert.h> #include <unistd.h> #include <string.h> #include <stdlib.h> #include <stdio.h> #include <errno.h> #define MAX_LINE 16384void do_read(evutil_socket_t fd, short events, void *arg);void do_write(evutil_socket_t fd, short events, void *arg);charrot13_char(char c) { /* We don't want to use isalpha here; setting the locale would change * which characters are considered alphabetical. */ if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M')) return c + 13; else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z')) return c - 13; else return c; } struct fd_state { char buffer[MAX_LINE]; size_t buffer_used; size_t n_written; size_t write_upto; struct event *read_event; struct event *write_event; }; struct fd_state *alloc_fd_state(struct event_base *base, evutil_socket_t fd) { struct fd_state *state = malloc(sizeof(struct fd_state)); f (!state) return NULL; state->read_event = event_new(base, fd, EV_READ|EV_PERSIST, do_read, state); if (!state->read_event) { free(state); return NULL; } state->write_event = event_new(base, fd, EV_WRITE|EV_PERSIST, do_write, state); if (!state->write_event) { event_free(state->read_event); free(state); return NULL; } state->buffer_used = state->n_written = state->write_upto = 0; assert(state->write_event); return state; } void free_fd_state(struct fd_state *state) { event_free(state->read_event); event_free(state->write_event); free(state); } void do_read(evutil_socket_t fd, short events, void *arg) { struct fd_state *state = arg; char buf[1024]; int i; ssize_t result; while (1) { assert(state->write_event); result = recv(fd, buf, sizeof(buf), 0); if (result <= 0) break; for (i=0; i < result; ++i) { if (state->buffer_used < sizeof(state->buffer)) state->buffer[state->buffer_used++] = rot13_char(buf[i]); if (buf[i] == '\n') { assert(state->write_event); event_add(state->write_event, NULL); state->write_upto = state->buffer_used; } } } if (result == 0) { free_fd_state(state); } else if (result < 0) { if (errno == EAGAIN) // XXXX use evutil macro return; perror("recv"); free_fd_state(state); } } void do_write(evutil_socket_t fd, short events, void *arg) { struct fd_state *state = arg; while (state->n_written < state->write_upto) { ssize_t result = send(fd, state->buffer + state->n_written, state->write_upto - state->n_written, 0); if (result < 0) { if (errno == EAGAIN) // XXX use evutil macro return; free_fd_state(state); return; } assert(result != 0); state->n_written += result; } if (state->n_written == state->buffer_used) state->n_written = state->write_upto = state->buffer_used = 1; event_del(state->write_event); } void do_accept(evutil_socket_t listener, short event, void *arg) { struct event_base *base = arg; struct sockaddr_storage ss; socklen_t slen = sizeof(ss); int fd = accept(listener, (struct sockaddr*)&ss, &slen); if (fd < 0) { // XXXX eagain?? perror("accept"); } else if (fd > FD_SETSIZE) { close(fd); // XXX replace all closes with EVUTIL_CLOSESOCKET */ } else { struct fd_state *state; evutil_make_socket_nonblocking(fd); state = alloc_fd_state(base, fd); assert(state); /*XXX err*/ assert(state->write_event); event_add(state->read_event, NULL); } } void run(void) { evutil_socket_t listener; struct sockaddr_in sin; struct event_base *base; struct event *listener_event; base = event_base_new(); if (!base) return; /*XXXerr*/ sin.sin_family = AF_INET; sin.sin_addr.s_addr = 0; sin.sin_port = htons(40713); listener = socket(AF_INET, SOCK_STREAM, 0); evutil_make_socket_nonblocking(listener); #ifndef WIN32 { int one = 1; setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); } #endif if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) { perror("bind"); return; } if (listen(listener, 16)<0) { perror("listen"); return; } listener_event = event_new(base, listener, EV_READ|EV_PERSIST, do_accept, (void*)base); /*XXX check it */ event_add(listener_event, NULL); event_base_dispatch(base); } int main(int c, char **v) { setvbuf(stdout, NULL, _IONBF, 0); run(); return 0; }
(另外需要注意的地方:我们使用evutil_socket_t代替int来表示一个socket;使用evutil_make_socket_nonblocking代替fcntl(O_NONBLOCK)让套接字变成非阻塞方式,这些改变让我们的代码兼容Win32下的一些分散的网络API)
你可能已经意识到我们的代码变得更加高效,同时它也变得更复杂。回到之前当我们forking时,我们不需要为每一个连接管理一个缓冲,我们仅仅为每一个进程带有一个单独的基于堆栈上的缓冲。我们不需要明确地去跟踪每一个套接字的读取或者写入事件,那已经在库的代码内部实现了。并且我们也不需要一个结构去跟踪每一个操作是否已经完成,我们仅使用循环和堆栈变量就可以了。
再者,如果你有windows下网络编程经验,你将会意识到,上面的例子中,libevent的使用可能没有带来性能的优化。在window中,实现高效异步IO的方式并不是使用像select这样的接口,而是IOCP(完成端口)。不像其他的一些高效的网络API,当套接字就绪可以操作时IOCP并不处理并告知你的应用程序需要进一步处理。取而代之的是,应用程序调用一个windows网络API去发起操作调用,稍后由IOCP通知应用程序操作已经完成了。
幸运的是,libevent2 的 bufferevents 接口解决了这些问题:它使编码更容易,并且提供了高效的实现在windows和Unix上的接口。