【OpenCV】特征检测器FeatureDetector

int main()
{

	initModule_nonfree();//if use SIFT or SURF
	Ptr detector = FeatureDetector::create( "SIFT" );
	Ptr descriptor_extractor = DescriptorExtractor::crea http://www.szhaoexport.com/linked/20130310.do te( "SIFT" );
	Ptr descriptor_matcher = DescriptorMatcher::create( "BruteForce" );
	if( detector.empty() || descriptor_extractor.empty() )
		throw runtime_error("fail to create detector!");

	Mat img1 = imread("images\\box_in_scene.png");
	Mat img2 = imread("images\\box.png");

	//detect keypoints;
	vector keypoints1,keypoints2;
	detector->detect( img1, keypoints1 );
	detector->detect( img2, keypoints2 );
	cout <<"img1:"<< keypoints1.size() << " points  img2:" <" << endl;

	//compute descriptors for keypoints;
	cout << "< Computing descriptors for keypoints from images..." << endl;
	Mat descriptors1,descriptors2;
	descriptor_extractor->compute( img1, keypoints1, descriptors1 );
	descriptor_extractor->compute( img2, keypoints2, descriptors2 );

	cout<"<" << endl;

	//Draw And Match img1,img2 keypoints
	Mat img_keypoints1,img_keypoints2;
	drawKeypoints(img1,keypoints1,img_keypoints1,Scalar::all(-1),0);
	drawKeypoints(img2,keypoints2,img_keypoints2,Scalar::all(-1),0);
	imshow("Box_in_scene keyPoints",img_keypoints1);
	imshow("Box keyPoints",img_keypoints2);

	descriptor_extractor->compute( img1, keypoints1, descriptors1 );  
	vector matches;
	descriptor_matcher->match( descriptors1, descriptors2, matches );

	Mat img_matches;
	drawMatches(img1,keypoints1,img2,keypoints2,matches,img_matches,Scalar::all(-1),CV_RGB(255,255,255),Mat(),4);

	imshow("Mathc",img_matches);
	waitKey(10000);
	return 0;
} 特征检测成果如图: http://www.6699ysk.info/linked/20130310.do

你可能感兴趣的:(【OpenCV】特征检测器FeatureDetector)