Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(《Object Recognition from Local Scale-Invariant Features》)提出的高效区域检测算法,在2004年(《Distinctive Image Features from Scale-Invariant Keypoints》)得以完善。
SIFT特征对旋转、尺度缩放、亮度变化等保持不变性,是非常稳定的局部特征,现在应用很广泛。而SIFT算法是将Blob检测,特征矢量生成,特征匹配搜索等步骤结合在一起优化。我会更新一系列文章,分析SIFT算法原理及OpenCV 2.4.2实现的SIFT源码:
SIFT::SIFT(int nfeatures=0, int nOctaveLayers=3, double contrastThreshold=0.04, double edgeThreshold= 10, double sigma=1.6)nfeatures:特征点数目(算法对检测出的特征点排名,返回最好的nfeatures个特征点)。
void SIFT::operator()(InputArray img, InputArray mask, vector<KeyPoint>& keypoints, OutputArray descriptors, bool useProvidedKeypoints=false)
SIFT::SIFT( int _nfeatures, int _nOctaveLayers, double _contrastThreshold, double _edgeThreshold, double _sigma ) : nfeatures(_nfeatures), nOctaveLayers(_nOctaveLayers), contrastThreshold(_contrastThreshold), edgeThreshold(_edgeThreshold), sigma(_sigma) // sigma:对第0层进行高斯模糊的尺度空间因子。 // 默认为1.6(如果是软镜摄像头捕获的图像,可以适当减小此值) { }
void SIFT::operator()(InputArray _image, InputArray _mask, vector<KeyPoint>& keypoints, OutputArray _descriptors, bool useProvidedKeypoints) const // mask :Optional input mask that marks the regions where we should detect features. // Boolean flag. If it is true, the keypoint detector is not run. Instead, // the provided vector of keypoints is used and the algorithm just computes their descriptors. // descriptors – The output matrix of descriptors. // Pass cv::noArray() if you do not need them. { Mat image = _image.getMat(), mask = _mask.getMat(); if( image.empty() || image.depth() != CV_8U ) CV_Error( CV_StsBadArg, "image is empty or has incorrect depth (!=CV_8U)" ); if( !mask.empty() && mask.type() != CV_8UC1 ) CV_Error( CV_StsBadArg, "mask has incorrect type (!=CV_8UC1)" ); // 得到第1组(Octave)图像 Mat base = createInitialImage(image, false, (float)sigma); vector<Mat> gpyr, dogpyr; // 每层金字塔图像的组数(Octave) int nOctaves = cvRound(log( (double)std::min( base.cols, base.rows ) ) / log(2.) - 2); // double t, tf = getTickFrequency(); // t = (double)getTickCount(); // 构建金字塔(金字塔层数和组数相等) buildGaussianPyramid(base, gpyr, nOctaves); // 构建高斯差分金字塔 buildDoGPyramid(gpyr, dogpyr); //t = (double)getTickCount() - t; //printf("pyramid construction time: %g\n", t*1000./tf); // useProvidedKeypoints默认为false // 使用keypoints并计算特征点的描述符 if( !useProvidedKeypoints ) { //t = (double)getTickCount(); findScaleSpaceExtrema(gpyr, dogpyr, keypoints); //除去重复特征点 KeyPointsFilter::removeDuplicated( keypoints ); // mask标记检测区域(可选) if( !mask.empty() ) KeyPointsFilter::runByPixelsMask( keypoints, mask ); // retainBest:根据相应保留指定数目的特征点(features2d.hpp) if( nfeatures > 0 ) KeyPointsFilter::retainBest(keypoints, nfeatures); //t = (double)getTickCount() - t; //printf("keypoint detection time: %g\n", t*1000./tf); } else { // filter keypoints by mask // KeyPointsFilter::runByPixelsMask( keypoints, mask ); } // 特征点输出数组 if( _descriptors.needed() ) { //t = (double)getTickCount(); int dsize = descriptorSize(); _descriptors.create((int)keypoints.size(), dsize, CV_32F); Mat descriptors = _descriptors.getMat(); calcDescriptors(gpyr, keypoints, descriptors, nOctaveLayers); //t = (double)getTickCount() - t; //printf("descriptor extraction time: %g\n", t*1000./tf); } }