我们在看到相关的技术资料时候,经常遇到dB和dBm的概念。dB,就是分贝,是一个以十为底的对数概念。注意,分贝只用来评价一个物理量和另一个物理量之间的比例关系,它本身并没有物理量纲。两个量之间的比例每增加10倍,则它们的差可以表示为10个分贝。
比如说:A="100",B="10",C="5",D="1"则
A/D=20dB;B/D="10dB";C/D="7dB";B/C=3dB。
也就是说,两个量差10分贝就是差10倍,差20分贝就是差100倍,依此类推。通常还需要记住差3分贝就是两个量之间差2倍。
dBm是分贝毫瓦的意思。就是说,固定1毫瓦的功率为0dBm,用以确定系统的功率。比如我们常见的读卡器的数据功率大多是27dBm和30dBm。27dBm就是500毫瓦;30dBm就是1000毫瓦(1瓦)。别看只差3dB,实际功率差两倍!
实用资料——关于天线增益及其考量
在无线通讯的实际应用中,为有效提高通讯效果,减少天线输入功率,天线会做成各种带有辐射方向性的结构以集中辐射功率,由此就引申出“天线增益”的概念。简单说,天线增益就是指一个天线把输入的射频功率集中辐射的程度,显然,天线的增益与其方向图的关系很大,主瓣越窄、副瓣越小的天线其增益就越高,而不同结构的天线,其方向图的差别是很大的。
在通讯技术领域,与其它考量功率、电平等参数的量值同样,天线增益也采用相对比较并取对数的简化法来表示,具体计算方法为:在某一方向向某一位置产生相同辐射场强的时,对无损耗理想基准天线的输入功率与待考量天线的输入功率的比值取对数后乘以10 (G=10lg(基准Pin/考量Pin)),即称为该天线在该点方向的增益。常用衡量天线增益的单位是dBi和dBd。对于dBi,其基准为理想的点源天线,即一个真正意义上的“点”来作天线增益的对比基准。理想点源天线的辐射是全向的,其方向图是个理想的球,同一球面上所有点的电磁波辐射强度均相同;对于dBd,其基准则为理想的偶极子天线。因偶极子天线是带有方向性的,故二者有个固定的恒差2.15即0dBd="2".15dBi。
需要说明的是,通常所说的“全向天线”不是严格的说法,全向天线应指在三维立体空间的全向,但工程界也往往把某个平面内方向图为圆周的天线称为全向天线,如鞭状天线,它在径向的主瓣是圆,但仍有轴向的副瓣。
常见天线的增益:鞭状天线6-9dBi,GSM基站用八木天线15-17dBi,抛物面定向天线则很容易做到24dBi。
在有线电视技术中我们常常遇到几个信号参数的量值,这几个量值是对数单位---分贝(db)。用分贝表示是为了便于表达、叙述和运算(变乘除为加减)。
分贝是表征两个功率电平比值的单位,如A=10lgP2/P1=20lgU2/U1=20lgI2/I1。分贝制单位在电磁场强计量测试中的用法有如下三种:
1、表示信号传输系统任意两点间的功率(或电压)的相对大小。如一个CATV放大器,当其输入电平为70dbμV时,其输出电平为100dbμV,也就是说放大器的输出相对于输入来说相差30db,这30db是放大器的增益。
2、在指定参考电平时可用分贝表示电压或电场强的绝对值,此参考电平通称为0db。如定义1μV=0dbμV、1mW=0dbm、1mV=0dbmV。例如,现有一个信号A其电平为3dbμV,换算成电压的表示方式为:3=20lgA/1μV、A=2μV,即这个3dbμV的信号电压为2μV。
3、用分贝表示电压或场强的误差大小,如30±3db。
通常db是表征电路损耗、增益的量值;dbmV和dbμV是表征信号的相对电平值,由于1mV=1000μV,所以有0dbmV=60lg10=60dbμV。例如,信号电平是70dbμV,用dbmV表示是70-60=10dbmV;dbm和dbw是表征信号的相对功率值,由于1W=1000mW,所以有0dbW=30lg10=30dbm,例如光功率为9dbm,换算成功率的单位(瓦)有:9=10lgx,x=7.9mW。
功率与电平的换算(dbm与dbμV的换算):
在很多情况下,我们手里都只有一台场强计,它的量值单位通常是dbμV,但在一些高频功率放大器中往往只给出输出信号的功率值,为此要将功率值换算成电平值,对于50欧阻抗的信号源来说,当其输出功率为1mW(0dbm)时,其端电压输出应为U=50P-E2×1000000=223606.7978μV,用分贝表示是:20lg223606.7978=107dbμV。也就是说0dbm的50欧信源的输出电平为107dbμV。
例如1:一50欧的高频功率放大器其输出功率为50dbm,求其输出电平,有:107+50=157dbμV。
例如2:某50欧接收设备其最小接收功率为-90dbm,求其最小接收电平,有:107-90=17dbμV。