一. 二维数组元素的地址
为了说明问题, 我们定义以下二维数组: int a[3][4]={{0,1,2,3}, {4,5,6,7}, {8,9,10,11}}; a为二维数组名, 此数组有3行4列, 共12个元素。但也可这样来理解, 数组a由三个元素组成: a[0], a[1], a[2]。而它匀中每个元素又是一个一维数组, 且都含有4个元素 (相当于4列), 例如, a[0]所代表的一维数组所包含的 4 个元素为 a[0][0], a[0][1], a[0][2], a[0][3]。如图5.所示: ┏━━━━┓ ┏━┳━┳━┳━┓ a─→ ┃ a[0] ┃─→┃0 ┃1 ┃2 ┃3 ┃ ┣━━━━┫ ┣━╋━╋━╋━┫ ┃ a[1] ┃─→┃4 ┃5 ┃6 ┃7 ┃ ┣━━━━┫ ┣━╋━╋━╋━┫ ┃ a[2] ┃─→┃8 ┃9 ┃10┃11┃ ┗━━━━┛ ┗━┻━┻━┻━┛ 图5. 但从二维数组的角度来看, a代表二维数组的首地址, 当然也可看成是二维数组第0行的首地址。a+1就代表第1行的首地址, a+2就代表第2行的首地址。 如果此二维数组的首地址为1000, 由于第0行有4个整型元素, 所以a+1为1008, a+2 也就为1016。如图6.所示 a[3][4] a ┏━┳━┳━┳━┓ (1000)─→┃0 ┃1 ┃2 ┃3 ┃ a+1 ┣━╋━╋━╋━┫ (1008)─→┃4 ┃5 ┃6 ┃7 ┃ a+2 ┣━╋━╋━╋━┫ (1016)─→┃8 ┃9 ┃10┃11┃ ┗━┻━┻━┻━┛ 图6. 既然我们把a[0], a[1], a[2]看成是一维数组名, 可以认为它们分别代表它们所对应的数组的首地址, 也就是讲, a[0]代表第 0 行中第 0 列元素的地址, 即&a[0][0], a[1]是第1行中第0列元素的地址, 即&a[1][0], 根据地址运算规则, a[0]+1即代表第0行第1列元素的地址, 即&a[0][1], 一般而言, a[i]+j即代表第 i行第j列元素的地址, 即&a[i][j]。 另外, 在二维数组中, 我们还可用指针的形式来表示各元素的地址。如前所述, a[0]与*(a+0)等价, a[1]与*(a+1)等价, 因此a[i]+j就与*(a+i)+j等价, 它表示数组元素a[i][j]的地址。 因此, 二维数组元素a[i][j]可表示成*(a[i]+j)或*(*(a+i)+j), 它们都与a[i][j]等价, 或者还可写成(*(a+i))[j]。 另外, 要补充说明一下, 如果你编写一个程序输出打印a和*a, 你可发现它们的值是相同的, 这是为什么呢? 我们可这样来理解: 首先, 为了说明问题, 我们把二维数组人为地看成由三个数组元素a[0], a[1], a[2]组成, 将a[0], a[1], a[2]看成是数组名它们又分别是由4个元素组成的一维数组。因此, a表示数组第 0行的地址, 而*a即为a[0], 它是数组名, 当然还是地址, 它就是数组第0 行第0 列元素的地址。 二. 指向一个由n个元素所组成的数组指针 |