- 2023-09-13
a6cad16c5cbf
锅锅编故事序从小就喜欢海阔天空的锅锅,终于安份了。因为她有了小口。小口是个安静的孩子,锅锅为了自己的天马行空得以释放决定给口口讲故事。第一集口口总是喜欢盯着阳台的一小盆雏菊,眼神都不给锅锅一个。锅锅眼珠骨碌一转,嘴巴开动了。在一个小城镇上,矗立着好几座高楼,住着稀疏的几户人家。楼前的绿化带住着统一的灌木,虽然是绿葱葱的,但并不喜人。在灌木丛里住着花猫一家。花猫妈妈,黑猫爸爸,还有三个才出生不久的小
- 磁盘性能评价指标—IOPS和吞吐量
???? ??? Frank
一、磁盘I/O的概念I/O的概念,从字义来理解就是输入输出。操作系统从上层到底层,各个层次之间均存在I/O。比如,CPU有I/O,内存有I/O,VMM有I/O,底层磁盘上也有I/O,这是广义上的I/O。通常来讲,一个上层的I/O可能会产生针对磁盘的多个I/O,也就是说,上层的I/O是稀疏的,下层的I/O是密集的。磁盘的I/O,顾名思义就是磁盘的输入输出。输入指的是对磁盘写入数据,输出指的是从磁盘读
- 【python版】示波器输出的csv文件(时间与电压数据)如何转换为频率与幅值【方法②】
cxylay
pythonpython开发语言示波器csv文件频谱频域时域
要将示波器输出的CSV文件中包含的时间与电压数据转换为频率与幅值数据,你可以按照以下步骤进行处理。这里假设你的数据是一个周期性信号,可以通过傅里叶变换来实现这种转换。1、准备数据①导入CSV文件首先,使用Python、Excel或任何数据处理工具导入你的CSV文件。CSV文件中应该有两列数据,分别为时间(time)和电压(voltage)。②检查数据确保时间列的单位是一致的(例如秒),电压列是以伏
- 【监控告警】02-Promtheus的学习之路
Kearey.
监控告警微服务网关学习方法
prometheus采用的是拉模式为主,推模式为辅的方式采集数据。Prometheus作为一个指标系统天生就不是精确的——由于指标本身就是稀疏采样的,事实上所有的图表和警报都是”估算”,我们也就不必太纠结于图表和警报的对应性,能够帮助我们发现问题解决问题就是一个好监控系统。当然,有时候我们也得证明这个警报确实没问题,那可以看一眼`ALERTS`指标。`ALERTS`是Prometheus在警报计算
- SRT3D: A Sparse Region-Based 3D Object Tracking Approach for the Real World
Terry Cao 漕河泾
3d人工智能计算机视觉目标跟踪
基于区域的方法在基于模型的单目3D跟踪无纹理物体的复杂场景中变得越来越流行。然而,尽管它们能够实现最先进的结果,大多数方法的计算开销很大,需要大量资源来实时运行。在下文中,我们基于之前的工作,开发了SRT3D,这是一种稀疏的基于区域的3D物体跟踪方法,旨在弥合效率上的差距。我们的方法在所谓的对应线(这些线模型化了物体轮廓位置的概率)上稀疏地考虑图像信息。由此,我们改进了当前的技术,并引入了考虑定义
- Redis数据结构—跳跃表 skiplist
马卫斌 前端工程师
skiplist
跳跃表(Skiplist)是Redis中用于实现有序集合(SortedSet)的一种高效数据结构。以下是关于Redis中跳跃表(Skiplist)的关键特性和工作原理的概览:基本概念层级结构:跳跃表通过多层次的链表组成,每一层都是下一层的稀疏视图,顶层最快地遍历整个链表,而底层则是完全连通所有节点的传统链表结构。这样的设计使得查询操作能够快速跳过大量不需要检查的元素。有序集合:每个节点(或称为元素
- seurat自学笔记1.0 单细胞数据导入
Sanye2022
pythonpandas
Python读取.h5ad文件importanndataimportpandasaspdadata=anndata.read("/home/R/R_data/Seurat/PBMC10/output/adata.h5ad")#adata.X.todense()#将稀疏矩阵转成普通矩阵#X=pd.DataFrame(adata.X.todense())#cell_name=adata.obs.ind
- 从底层原理上理解ClickHouse 中的稀疏索引
goTsHgo
大数据分布式Clickhouse数据库clickhouse
稀疏索引(SparseIndexes)是ClickHouse中一个重要的加速查询机制。与传统数据库使用的B-Tree或哈希索引不同,ClickHouse的稀疏索引并不是为每一行数据构建索引,而是为数据存储的块或部分数据生成索引。这种索引的核心思想是通过减少需要扫描的数据范围来加速查询,特别适用于大数据量场景。1.基本概念:数据存储与索引在理解稀疏索引之前,首先需要理解ClickHouse的列式存储
- 暖暖
点点桃夭
依旧是这样一个阳光灿烂的暮春的午后,久病卧床的奶奶让我扶她到院中走走,夕阳斜斜的穿过树缝,洒落一地斑驳的投影,我扶着奶奶坐在了院前草垛旁的一块青石板上。“奶奶,我给您梳头”我飞快地往家里跑,“丫头,慢点儿”奶奶笑呵呵的叫着。取来梳子,我轻轻挽起奶奶斑驳而稀疏的发丝,小心而笨拙梳着,夕阳洒在奶奶爬满皱纹而略带红晕的脸上,她静静地看着眼前几只正在啄米的浅黄色小鸡,慈爱而安详的脸上写满幸福的笑容、、、、
- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 《暴雨突至,有你真好!》叶子
惊艳一秋
颠簸了几个小时的车程,身心俱疲。和好友吃完饭,暴雨突至。昨夜雨疏风骤,又恐思绪依旧,灯火阑珊处的影子,归期何时?大雨滂沱,灯火微弱,行人稀疏,水漫马路。没有雨伞,没有车辆,踮起脚尖,提起裤脚,趟过小河似的路面。雨越下越大,雷声越来越响,一道闪电划入天际,仓皇而逃。打不到车,见不到人儿,狂奔雨幕,雨水模糊了我的双眼,不知是雨还是泪?已记不清这是多少次在雨中狼狈的自己,明明不愿,却又不得不如此。明明渴
- 乡村·腊月
月亮树上的蝴蝶
图片发自App清凌凌地冬阳斜斜地织着,稀稀疏疏,像父亲头顶寥寥无几的白发,静默在岁月的深处。天灰灰地,像迷离地梦。低低地,仿佛触手可及。太阳挂在远处地树梢上,宛若那过了年节的灯笼,有些有气无力地垂着。清寒地风吹过,树枝轻轻地颤着,阳光也被搅乱了许多,愈发含混不清了。田里的冬雪初融未尽,冬阳落在上面,那一撮撮的白色陡然变成了晶莹地盐粒,熠熠闪着光,略微灼目,但不会有伤痛。两只喜鹊欢叫着,在路边的树枝
- 基于深度学习的基因组数据分析
SEU-WYL
深度学习dnn深度学习数据分析人工智能
基于深度学习的基因组数据分析利用深度学习技术来处理和分析基因组数据,帮助解决基因组学领域中一些复杂且具有挑战性的问题。这种方法已经在疾病预测、基因功能预测、变异检测、基因表达调控分析、个性化医疗等方面取得了显著进展。1.基因组数据分析的核心挑战基因组数据分析涉及以下主要挑战:高维数据与稀疏性:基因组数据通常包括数百万到数十亿个碱基对,数据维度非常高。同时,许多基因变异事件是稀有的,这种稀疏性使得数
- 小诗歌一首——《旅行》
南湖居士
旅行文/南湖居士云朵在自由地漂浮描绘着天空的荒芜时而清楚时而模糊倒影依旧那般稀疏只有流水与落叶开始追逐命运总是前途未卜却把握着各自既定的归途2018.8.13
- 旧版中 pytorch.rfft 函数与新版 pytorch.fft.rfft 函数对应修改问题
带鱼的鱼香肉丝
pytorchPythonpytorchpythonfft
旧版中pytorch.rfft函数与新版pytorch.fft.rfft函数对应修改问题前言一、旧版pytorch.rfft()函数解释二、新版pytorch.fft.rfft()函数解释三、总结前言这两天整理谱池化操作,需要用到傅里叶变换这个函数。后来提升了pytorch的版本以后,发现之前的torch.rfft()函数在新版的pytorch中使用会报错,后来查阅资料,发现是新版的参数有些变动。
- 大模型LLM面试常见算法题-包括Attention和Transformer常见面试题
剑圣土豆
算法面试大模型学习自然语言处理transformer算法nlp自然语言处理面试深度学习人工智能
大模型:位置编码有哪些?介绍LoRA与QLoRARAG和微调的区别是什么?哪些因素会导致LLM的偏见?什么是思维链(CoT)提示?Tokenizer的实现方法及原理解释一下大模型的涌现能力?解释langchainAgent的概念langchain有哪些替代方案?RLHF完整训练过程是什么?为什么RLHF的效果这么好?RLHF使用的训练数据是什么样的?RAG和微调的区别是什么?有了解过什么是稀疏微调
- CCF-CSP认证考试准备第十天
爱coding的橙子
CCF-CSP认证c++算法数据结构
###Day10:1.202206-22.202209-2(先放一下)3.202212-2####1.202206-2:寻宝!大冒险!(枚举,稀疏数组,犯了一个边界判断逻辑错误,只有60,改正即为100)(1)一开始漏了绿化图是0但宝藏图是1的这种情况,但加上去只有60分思路:宝藏图很大,只要存储几个为1的点的坐标即可,有点类似稀疏向量,用set存储即可快速判断一个坐标在宝藏图中是否为1(哈希思想
- Autoencoder
chuange6363
人工智能python
自编码器Autoencoder稀疏自编码器SparseAutoencoder降噪自编码器DenoisingAutoencoder堆叠自编码器StackedAutoencoder本博客是从梁斌博士的博客上面复制过来的,本人利用Tensorflow重新实现了博客中的代码深度学习有一个重要的概念叫autoencoder,这是个什么东西呢,本文通过一个例子来普及这个术语。简单来说autoencoder是一
- 恶意与肮脏都藏在阴暗处,不论个人还是社会
活到125
接着说前天我去烟台山公园,深秋的景色没的说,叶落玩转而落如蝴蝶舞翼。海边风景如画,不少人选择在这里拍婚纱照,在这里也能看到远处的烟台港。我一路循着美景,不知不觉走到一处小径,一条通向海边的小路。路的两边有一人多高的冬青,在路口看起来甚是幽僻,地上落叶稀疏少有人至。我喜欢幽静的地方,就循路走了下去。没想到走不过十几米,就被一片屎尿混合的气味包围,循路探幽的心转瞬消失。那感觉就像是有成千上万的臭烘烘的
- HBase
傲雪凌霜,松柏长青
大数据后端hbase数据库大数据
ApacheHBase是一个基于Hadoop分布式文件系统(HDFS)构建的分布式、面向列的NoSQL数据库,主要用于处理大规模、稀疏的表结构数据。HBase的设计灵感来自Google的Bigtable,能够在海量数据中提供快速的随机读写操作,适合需要低延迟和高吞吐量的应用场景。HBase核心概念表(Table):HBase的数据存储在表中,与传统的关系型数据库不同,HBase的表是面向列族(Co
- 视觉SLAM十四讲学习笔记——第十讲 后端优化(2)
晒月光12138
视觉SLAM十四讲学习笔记slamubuntu
上文提到考虑全局的后端优化计算量非常大,因此在计算增量方程时,借助H矩阵的稀疏性加速运算。但是随着时间的推移,累积的相机位姿和路标数量还是会导致计算量过大,以上一节的示例代码数据为例:16张图像,共提取到22106个特征点,这些特征点共出现了83718次。对于一个20Hz更新速度,上述的数据量甚至还不到1s的内容,因此在求解大规模定位建图问题时,一定要控制BA的规模。这里主要有两种解决思路:(1)
- ClickHouse实战处理(一):MergeTree系列引擎
sheep8521
clickhouse数据库大数据
MergeTree作为家族系列最基础的表引擎,主要有以下特点:存储的数据按照主键排序:创建稀疏索引加快数据查询速度。支持数据分区,可以通过PARTITIONBY语句指定分区字段。支持数据副本。支持数据采样。总之适用于高负载任务的最通用和功能最强大的表引擎。可以快速插入数据并进行后续的后台数据处理。支持数据复制(使用Replicated*的引擎版本)、分区和其他引擎不支持的特性MergeTree系列
- 代码随想录算法训练营第六十五天 | dijkstra(堆优化版)精讲、Bellman_ford 算法精讲、复习
Danny_8
算法java数据结构图论
dijkstra(堆优化版)精讲—卡码网:47.参加科学大会题目链接:https://kamacoder.com/problempage.php?pid=1047文档讲解:https://programmercarl.com/kamacoder/0047.%E5%8F%82%E4%BC%9Adijkstra%E5%A0%86.html思路当节点数多,边数少(稀疏图)时,可以考虑从边的角度出发,用堆
- 点云从入门到精通技术详解100篇-点云特征学习模型及其在配准中的应用
格图素书
学习
目录前言应用前景国内外研究现状点云特征提取算法研究现状点云配准算法研究现状相关理论基础2.1深度学习2.1.1深度学习概述2.1.2自编码器2.1.3稀疏编码2.1.4受限玻尔兹曼机2.2多层感知机2.2.1多层感知机概述2.2.2感知器与多层感知机2.2.3多层感知机的训练2.3点云配准方法2.3.1无点对应关系的点云配准方法2.3.2基于对应关系的点云配准方法2.4评价指标2.4.1点云配准评
- python 傅里叶曲线拟合
大霸王龙
python傅里叶python机器学习
先看一段效果代码结构拟合曲线的方程将原始数据和拟合结果绘制到一张图上,并保存图片合成视频import部分说明fromscipy.optimizeimportcurve_fitimportmatplotlib.pyplotaspltimportnumpyasnpimportsysimportos拟合方程如下deffourier(x,*args):w=2*np.pi/200ret=0fordeginr
- 模型剪枝综述
发狂的小花
人工智能#模型部署深度学习人工智能模型部署模型剪枝性能优化
目录1深度神经网络的稀疏性:2剪枝算法分类:3具体的剪枝方法包括:4剪枝算法流程:5几种常见的剪枝算法:6结构化剪枝和非结构化剪枝各有其优缺点:7剪枝算法对模型精度的影响8影响剪枝算法对模型精度的因素模型压缩中的剪枝算法是一种应用广泛的模型压缩方法,其通过剔除模型中“不重要”的权重,来减少模型的参数量和计算量,同时尽量保证模型的精度不受影响。模型剪枝的核心是模型中的权重、激活、梯度等是稀疏的,减少
- 重逢
麦小西的世界
时隔多年,再次见到阿诚竟是在老慕的葬礼上,因缘际会,总是无常,我和阿诚的相识是在老慕的婚礼,重逢却是在老慕的葬礼。阿诚穿着黑西装,头发稀疏的趴在头上,隔着厚厚的眼镜片我看见他眼里噙着泪,直直的向我走来。我不知道这泪是因为老慕还是因为我,我猜多半是因为老慕吧,我立在原地,不知道该露出什么表情,我很想给他个微笑,但是今天的场合,貌似不妥,我只能呆呆的看着他,心里早已翻江倒海,却还要假装平静,阿诚看着我
- 2021-07-01
c2edf16864e4
两棵丝瓜。一棵茂盛,一棵孱弱——有了雨旱(不知道哪两个字)。茂盛的这棵让人喜欢,每天来看都给人不同的欢喜,尤其是绽放的黄色花朵——她是果实的梦啊。昨天一朵,今天就成了三朵,她用绽放昭示着生命的蓬勃,真好!孱弱的这棵让人疼惜,真的很疼惜。同样的土壤同样的照护,可是她却枝干矮小,叶子稀疏蜷曲,并排站在同伴旁边,越发显得孱弱。可怜的,不怪你,你也不想病,你也在和同伴一样努力挺身,想和她一样绽放,但因为枝
- 困倦的午后会议
谣知
灯光不明不暗,温度不冷不热,空气不咸不淡从头顶的音响里扩散出的音调忽高忽低是最不讲道理的催眠曲质量不一的躯体都陷入了软乎乎的沙发椅软骨头的几乎要被埋没的时候头发稀疏的脑袋瓜上闪过一束光旁边的硬骨头一个激灵把它从沙发里提溜出来一阵掌声响起呱唧呱唧谁也看不见软骨头错愕的表情
- 初春的雨
寒江独钓
一整天没有看到太阳了,风呼呼地吹,吹得窗户哗啦哗啦地响,窗户上的窗纸随着风不断地摆动。窗外,天阴沉沉的,似乎有乌云在随风飘走。仔细一瞧,从空中细细的洒着星星点点的雨丝,淅淅沥沥地,如牛毛,似钢针,从天上斜斜的落下。窗外的小树,还是依然萧索,枝桠干枯,稀稀疏疏地留着几片枯叶。当你仔细看时,却发现,枝头不知什么时候,已经出现了一个个小小的芽苞,一排一排,宛如一串串冰糖葫芦似的。心里不由一震,这不是春的
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象