hive和hbase的整合

hive hbase整合,要求比较多,1.hive的得是0.6.0(当前最新的版本)
2.hive本身要求hadoop的最高版本是hadoop-0.20.2
3.要求hbase的版本是0.20.3,其他版本需要重新编译hive_hbase-handler
但是新版的hbase(0.90)变动特别大,根本无法从编译。这点比较恶心,hbase目前升级比较快,当前是0.90(从0.20.6直接跳到0.89),至于为什么这样跳跃,参考官方的解释http://wiki.apache.org/hadoop/Hbase/HBaseVersions
开场白:
Hive与HBase的整合功能的实现是利用两者本身对外的API接口互相进行通信,相互通信主要是依靠hive_hbase-handler.jar工具类 (Hive Storage Handlers ), 大致意思如图所示:
hive-hbase

1)启动Hbase,
要求hbase-0.20.3,zookeeper-3.2.2
如果使用的不是hbase-0.20.3需要重新编译hive_hbase-handler.jar

2)单节点HBase的连接
./bin/hive -hiveconf hbase.master=master:60000

3)集群HBase的连接
1.启动zookeeper
2.启动hbase
3.启动hive,添加zookeeper的支持
./bin/hive -hiveconf hbase.zookeeper.quorum= master,slave-A,slave-B

//所有的zookeeper节点
二、插入数据
启动
./bin/hive --auxpath /data/soft/hive/lib/hive_hbase-handler.jar,/data/soft/hive/lib/hbase-0.20.3.jar,/data/soft/hive/lib/zookeeper-3.2.2.jar  -hiveconf hbase.zookeeper.quorum=slave-001,slave-002,slave-003

hive
1.创建hbase识别的数据库
CREATE TABLE hbase_table_1(key int, value string)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:val")
TBLPROPERTIES ("hbase.table.name" = "xyz");

hbase.table.name 定义在hbase的table名称
hbase.columns.mapping 定义在hbase的列族

2.使用sql导入数据
i.预先准备数据

a)新建hive的数据表

CREATE TABLE pokes (foo INT, bar STRING);

b)批量插入数据

hive> LOAD DATA LOCAL INPATH './examples/files/kv1.txt' OVERWRITE INTO TABLE pokes;

这个文件位于hive的安装目录下,examples/files/kv1.txt

ii.使用sql导入hbase_table_1

INSERT OVERWRITE TABLE hbase_table_1 SELECT * FROM pokes WHERE foo=86;

注意,默认的启动会报错的
FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.ExecDriver
启动的时候要添加
-auxpath /data/soft/hive/lib/hive_hbase-handler.jar,/data/soft/hive/lib/hbase-0.20.3.jar,/data/soft/hive/lib/zookeeper-3.2.2.jar

3查看数据

hive> select * from  hbase_table_1;

会显示刚刚插入的数据
86      val_86

hbase
1.登录hbase
[root@master hbase]# ./bin/hbase shell

2.查看表结构

hbase(main):001:0> describe 'xyz'
DESCRIPTION                                                             ENABLED                              
 {NAME => 'xyz', FAMILIES => [{NAME => 'cf1', COMPRESSION => 'NONE', VE true                                 
 RSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN_MEMORY =>                                      
  'false', BLOCKCACHE => 'true'}]}                                                                           
1 row(s) in 0.7460 seconds

3.查看加载的数据
hbase(main):002:0> scan 'xyz'
ROW                          COLUMN+CELL                                                                                      
 86                          column=cf1:val, timestamp=1297690405634, value=val_86 

1 row(s) in 0.0540 seconds
可以看到,在hive中添加的数据86,已经在hbase中了

4.添加数据
' hbase(main):008:0> put 'xyz','100','cf1:val','www.360buy.com' 
0 row(s) in 0.0630 seconds

Hive
参看hive中的数据

hive> select * from hbase_table_1;                                           
OK
100     www.360buy.com
86      val_86
Time taken: 8.661 seconds

刚刚在hbase中插入的数据,已经在hive里了

hive访问已经存在的hbase
使用CREATE EXTERNAL TABLE
CREATE EXTERNAL TABLE hbase_table_2(key int, value string)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = "cf1:val")
TBLPROPERTIES("hbase.table.name" = "some_existing_table");

三、多列和多列族(Multiple Columns and Families)
1.创建数据库

CREATE TABLE hbase_table_2(key int, value1 string, value2 int, value3 int)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES (
"hbase.columns.mapping" = ":key,a:b,a:c,d:e"
);

2.插入数据

INSERT OVERWRITE TABLE hbase_table_2 SELECT foo, bar, foo+1, foo+2
FROM pokes WHERE foo=98 OR foo=100;

这个有3个hive的列(value1和value2,value3),2个hbase的列族(a,d)
Hive的2列(value1和value2)对应1个hbase的列族(a,在hbase的列名称b,c),hive的另外1列(value3)对应列(e)位于列族(d)

3.登录hbase查看结构
hbase(main):003:0> describe "hbase_table_2"
DESCRIPTION                                                             ENABLED                              
 {NAME => 'hbase_table_2', FAMILIES => [{NAME => 'a', COMPRESSION => 'N true                                 
 ONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN_M                                      
 EMORY => 'false', BLOCKCACHE => 'true'}, {NAME => 'd', COMPRESSION =>                                       
 'NONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN                                      
 _MEMORY => 'false', BLOCKCACHE => 'true'}]}                                                                 
1 row(s) in 1.0630 seconds

4.查看hbase的数据
hbase(main):004:0> scan 'hbase_table_2'
ROW                          COLUMN+CELL                                                                     
 100                         column=a:b, timestamp=1297695262015, value=val_100                              
 100                         column=a:c, timestamp=1297695262015, value=101                                  
 100                         column=d:e, timestamp=1297695262015, value=102                                  
 98                          column=a:b, timestamp=1297695242675, value=val_98                               
 98                          column=a:c, timestamp=1297695242675, value=99                                   
 98                          column=d:e, timestamp=1297695242675, value=100                                  
2 row(s) in 0.0380 seconds

5.在hive中查看
hive> select * from hbase_table_2;
OK
100     val_100 101     102
98      val_98  99      100
Time taken: 3.238 seconds

参考资料
http://wiki.apache.org/hadoop/Hive/HBaseIntegration

你可能感兴趣的:(hadoop,hive,职场,hbase,休闲)