- Unet 改进:在encoder和decoder间加入TransformerBlock
听风吹等浪起
AI改进系列transformer图像分割Unet
目录1.TransformerBlock2.Unet改进3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.TransformerBlockTransformerBlock是Transformer模型架构的基本组件,广泛应用于机器翻译、文本摘要和情感分析等自然语言处理任务。TransformerBlock是一个由两个子组件组成的构建块:多头注意力机制和前
- Encoder-only decoder-only encoder-decoder大模型的区别
阿牛牛阿
aiopencv人工智能AIGCchatgpt
1.Encoder-Only架构-定义:仅包含编码器部分,主要用于处理输入数据而不生成输出。-适用任务:文本分类、情感分析、命名实体识别等。-优点:能够更好地理解输入文本的语义和上下文信息,适合需要特征提取的任务。-缺点:无法直接生成文本输出。-代表模型:BERT、RoBERTa、ALBERT等。2.Decoder-Only架构-定义:仅包含解码器部分,通常用于序列生成任务。-适用任务:文本生成、
- pytorch实现简单的情感分析算法
纠结哥_Shrek
pytorch人工智能python
在PyTorch中实现中文情感分析算法通常涉及以下几个步骤:数据预处理、模型定义、训练和评估。下面是一个简单的实现示例,使用LSTM模型进行中文情感分析。1.数据预处理首先,我们需要对中文文本进行分词,并将文本转换为数值形式(如词向量)。可以使用jieba进行分词,并使用torchtext或自定义的词汇表将词语转换为索引。importtorchimporttorch.nnasnnimporttor
- 啥是CSD?
asdsad12311
csd基础了解了解csd你知道多少
修改CSD即CentralShoppingDistrict,它不是城市中间的人气集合的地方,是多中间开展城市规划的具体体会,在国际上,CSD是确保大型城市经济持续开展的最科学的解决方案,也是城市开展过程中一个具有颠覆性的测验。CSD是一种全新的休闲方法,通常选址于城市之间的交通枢纽上,多以主题公园、超大规模商业中间(如奥特莱斯)、大型酒店餐饮文娱业为主要业态构成经济中心,最重要的是有必要具有区域内
- 讯飞绘镜(ai生成视频)技术浅析(三):自然语言处理(NLP)
爱研究的小牛
AIGC—视频AIGC—自然语言处理自然语言处理人工智能自然语言处理AIGC深度学习
1.技术架构概述讯飞绘镜的NLP技术架构可以分为以下几个核心模块:语义分析:理解用户输入的文本,提取关键信息(如实体、事件、情感等)。情节理解:分析文本中的故事情节,识别事件序列和逻辑关系。人物关系建模:识别文本中的人物及其关系,构建人物关系图。场景生成:根据情节和人物关系生成场景描述。每个模块都依赖于先进的深度学习模型和算法,以下将逐一详细讲解。2.语义分析语义分析的目标是从用户输入的文本中提取
- 《攻克语言密码:教AI理解隐喻与象征》
程序猿阿伟
人工智能
在自然语言处理(NLP)领域,让计算机理解人类语言中的隐喻和象征,是迈向更高语言理解水平的关键一步。从“时间就是金钱”这样的概念隐喻,到文学作品里象征着坚韧的“寒梅”,这些非字面意义的表达方式承载着丰富的情感与文化内涵。然而,对于基于规则和数据驱动的NLP模型来说,理解隐喻和象征一直是块难啃的硬骨头。理解隐喻与象征:人类语言的独特魅力隐喻和象征作为常见的修辞手法,为语言表达增添了生动性与深度。隐喻
- [特殊字符]文献阅读分享:《负面情绪更吸睛?利用大型语言模型重构新闻推荐系统中的情感框架》
Sheakan
推荐系统论文阅读总结语言模型重构人工智能
论文背景在当今信息爆炸的时代,新闻推荐系统(NewsRecommenderSystems,NRS)成为用户获取新闻的重要工具。然而,新闻内容的呈现方式(即新闻框架)对用户的参与度和付费意愿有着深远的影响。随着人工智能技术的发展,大型语言模型(LLMs)逐渐被引入新闻生产过程,为新闻框架的重构提供了新的可能性。本文通过实验研究,探讨了基于LLM的情感框架重构对用户情感、参与度和付费意愿的影响。相关工
- 如何根据壁纸主题选择合适的主色调?
2401_89910411
数码相机
选择合适的主色调是壁纸设计中的关键步骤,它直接影响到壁纸的整体风格和情感传达。以下是一些根据壁纸主题选择主色调的技巧和建议:一、明确壁纸主题浪漫风格:主题:营造温馨、梦幻的氛围。主色调:粉色、紫色、浅蓝色、米色等柔和色调。示例:粉色渐变背景,搭配紫色的花朵和浅蓝色的光晕,营造出浪漫的氛围。自然风格:主题:展现自然、清新、宁静的氛围。主色调:绿色、蓝色、米色、白色等自然色调。示例:绿色渐变背景,搭配
- Synthesia技术浅析(四):自然语言处理
爱研究的小牛
AIGC—视频AIGC—虚拟现实AIGC—自然语言处理自然语言处理人工智能AIGC
Synthesia的自然语言处理(NLP)模块是其核心技术之一,涵盖了文本转语音(TTS)、情感分析以及多语言支持等多个方面。一、文本转语音(TTS)1.关键组件Synthesia的TTS系统主要依赖于Tacotron2和WaveGlow模型。这些模型共同作用,将文本转换为高质量的语音。2.过程模型详解2.1文本预处理文本预处理是TTS的第一步,包括分词、标点符号处理、数字和日期格式转换等。分词(
- 豆包MarsCode 蛇年编程大作战-2025蛇年花样贪吃蛇
BLACK594
豆包MarsCode人工智能vue.js
贪吃蛇游戏是一款经典的休闲游戏,它的核心机制简单且充满趣味。在这个即将到来蛇年,我决定用豆包MarsCode实现他,唤起大家对经典游戏的回忆,为这个特别的年份增添一份别样的乐趣。完整代码及在线体验在线体验-豆包MarsCode花样贪吃蛇游戏素材来自于4399游戏"贪吃蛇竞技场"代码采用Vue实现,豆包MarsCode辅助开发
- 人机融合就是心芯相印
人机与认知实验室
人工智能
人机融合通常是指人类和计算机或智能设备在不同层面上的结合与协作,从而在增强人类能力、提升工作效率、创造更好的体验等方面实现突破。而“心芯相印”则充满诗意和象征性,似乎是在强调人机融合的深层次联结,指的不仅仅是技术上的结合,更是在人性、情感和智慧上的共鸣与契合。“心”在这里不仅仅代表着情感,还可以理解为人的认知和思想。人类是有情感、有意识、有自我意识的生物,科技的最终目的是为了增强人的体验与能力,让
- 不同客户群,交互设计原则
zhanggongzichu
个人成长前端交互设计规范
1.对于不同客户群,交互设计原则ToB(企业对企业)和ToC(企业对消费者)ToC客户群简单性和直观性:产品界面应简单直观,容易理解和操作,不需要用户培训。个性化和情感化:考虑用户情感需求,通过设计语言和交互方式建立情感联系。视觉吸引力:强调视觉设计的吸引力,以吸引用户眼球和提升用户体验。互动性:提供丰富的互动元素,例如动画、过渡效果,以增强用户参与感和互动体验。ToB客户群效率和功能性:产品设计
- 数字人+虚拟展厅:开启互动展览新篇章!
jimumeta
3D行业资讯人工智能vrar虚拟展厅3D展厅
“数字人+展厅”这一组合正逐渐成为展览展示领域的新宠,它融合了最前沿的人工智能、虚拟现实、增强现实等技术,为观众带来了前所未有的互动新体验。数字人,即利用计算机图形学、人工智能等技术生成的具有人类外貌、行为和交互能力的虚拟形象。这些数字人不仅在外形上栩栩如生,还能通过自然语言处理、语音识别与合成等技术实现与人类的实时交互,模拟出真实的人际对话和情感表达。展厅应用的优势增强互动性:数字人作为展厅的虚
- 剥离情绪的内耗
匹马夕阳
读书经验分享
情绪的内耗,指的是我们内心对于某些情绪的过度反应、反复纠结,或者对情感的压抑所产生的心理消耗。这种内耗通常会让我们感到疲惫、焦虑、无力,甚至影响到我们的行为和决策。要真正剥离情绪的内耗,核心在于如何认识、接受并合理处理情绪,而不是压抑或逃避它们。1.认识情绪的本质情绪是对外界刺激的一种自然反应,它是无害的,甚至是有益的——情绪可以帮助我们应对环境、调节行为。但当我们对情绪产生过度的反应,或者被情绪
- 机位:解锁摄影视角的多维度密码
长安er
光电摄影数码相机摄影小年机位相机佳能镜头
目录一、机位的构成要素(一)高度维度(二)角度维度(三)距离维度二、移动机位的魅力(一)推镜头(二)拉镜头(三)摇镜头(四)移镜头三、选择机位的考量因素(一)拍摄主题(二)拍摄场景(三)想要传达的情感四、综合运用机位要素在摄影艺术的领域中,机位的巧妙运用宛如一把神奇的钥匙,能够开启通往独特视觉体验的大门。机位并非单一维度的概念,它涵盖了高度、角度以及距离这三个关键要素,每个要素都如同一个独立的变量
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- 基于深度学习的舆论分析与检测系统应用与研究
计算机软件程序设计
机器学习深度学习人工智能舆论检测
【1】系统介绍研究背景随着互联网技术的迅猛发展和社会媒体平台的普及,信息传播的速度和范围达到了前所未有的水平。这一变化不仅极大地丰富了人们的社交生活,也为社会科学研究提供了新的视角和工具。舆论分析作为社会科学研究的一个重要分支,其目的是通过收集和分析网络上的公众意见和情感倾向,来了解人们对特定事件或话题的看法和态度。近年来,基于深度学习的自然语言处理技术取得了显著进步,这为提高舆论分析的准确性和效
- BERT模型在情感分析中的应用:探寻文本情感的智能之路
Echo_Wish
前沿技术人工智能bert人工智能深度学习
随着互联网的普及和社交媒体的兴起,情感分析(SentimentAnalysis)已成为自然语言处理(NLP)领域的重要研究方向。情感分析通过对文本数据的分析,识别其中所表达的情感倾向(如正面、负面或中性)。近年来,BERT(BidirectionalEncoderRepresentationsfromTransformers)模型凭借其强大的上下文理解能力,在情感分析中展现出了卓越的性能。本文将深
- INTJ 型人格详细解读职业发展、情感沟通和心理健康
Luntu
www.zxgj.cn求职招聘职场和发展程序人生
INTJ型人格,也被称之为建筑师型人格,在MBTI16种人格类型里,那可是相当独特又少见的一类。这类人思维深邃得很,脑袋里全是创造力,看世界的角度独特得很。INTJ擅长逻辑分析,瞅一眼就能抓住事物的本质,靠着超强的内在逻辑,搭建起属于自己对世界的认知体系。本文主要是分析intj型人格的特征(包括优势和不足),并将这些特征和职业发展,人际关系,心理健康等方面相结合,探索intj型人格的各方面,为谋划
- 多层感知机和神经网络的区别_情感分析之多层全连接神经网络
weixin_39653766
多层感知机和神经网络的区别
全连接神经网络全连接神经网络是一种最基本的神经网络结构,英文为FullConnection,所以一般简称FC。FC的准则很简单:神经网络中除输入层之外的每个节点都和上一层的所有节点有连接。上图是一个双隐层的前馈全连接神经网络,或者叫多层感知机(MLP)。它的每个隐层都是全连接层。它的每一个单元叫神经元。多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hiddenlayer)。隐藏层位于输入层
- 使用Google Cloud Vertex AI进行文本和多模态生成
sagvWSRJHMNEB
人工智能计算机视觉python
技术背景介绍GoogleCloudVertexAI是一个强大的框架,提供了多种AI模型的开放访问和动态部署,包括文本、代码和多模态生成模型。通过VertexAI,用户可以利用不同的基础模型,如Gemini、Palm、和Llama,来实现复杂的AI应用。VertexAI不仅限于文本生成,还支持多模态输入,如图像和音频,极大地扩展了AI应用的潜力。核心原理解析VertexAI提供了一种简化的方式来使用
- 自动检测和机器审核系统实现
╰つ゛木槿
javaeasyuijavascriptpythonjava自然语言处理
目录一、自动检测和机器审核实现步骤1.文本预处理步骤细节:2.关键词检测步骤细节:3.情感分析与情境理解步骤细节:4.机器学习模型训练步骤细节:5.深度学习模型步骤细节:6.多模态审查步骤细节:7.用户行为分析与违规预测步骤细节:总结二、常用的分词工具1.jieba2.THULAC3.HanLP4.SnowNLP5.LAC(LexicalAnalysisofChinese)6.PyLDAvis(结
- EMO2: 情感表达驱动的语音控制头像视频生成
AIGC探路者
计算机视觉数字人talkingheadtalkingfaceAIGC
本文提出了一种新颖的语音驱动说话头像方法,能够同时生成高度表现力的面部表情和手势。与现有专注于生成全身或半身姿态的方法不同,我们研究了语音手势生成的挑战,并识别出音频特征与全身手势之间较弱的对应关系作为关键限制。为解决这一问题,我们将任务重新定义为两阶段过程。在第一阶段,我们直接从音频输入生成手部姿势,利用音频信号与手部动作之间的强相关性。在第二阶段,我们采用扩散模型合成视频帧,结合第一阶段生成的
- Python 如何使用 Bert 进行中文情感分析
程序员徐师兄
Python入门专栏pythonbert开发语言情感分析
前言在自然语言处理(NLP)领域,情感分析是一个非常常见且重要的应用。情感分析通常用于识别文本中的情感,例如判断一条微博或评论是正面、负面还是中性。在过去的几年中,随着深度学习的发展,BERT(BidirectionalEncoderRepresentationsfromTransformers)模型迅速成为了处理自然语言的强大工具。BERT是一种基于Transformer架构的预训练模型,它能够
- 深入理解旋转位置编码(RoPE)及其在大型语言模型中的应用
tangjunjun-owen
语言模型-多模态大模型语言模型人工智能自然语言处理RoPE旋转位置编码
文章目录前言一、旋转位置编码原理1、RoPE概述2、复数域内的旋转1、位置编码生成2、应用位置编码二、RoPE的实现细节1、RotaryEmbedding类设计2、apply_rotary_pos_emb函数3、demo_apply_rotary_pos_emb函数三、完整RoPE代码Demo前言随着自然语言处理(NLP)领域的快速发展,预训练的语言模型如BERT、GPT系列、PaLM、Qwen等
- 首个“非遗版春节”怎么过?扫描全能王发起新春扫描活动
人工智能算法
“爆竹声中一岁除,春风送暖入屠苏”。春节凝结了华夏民族数千年来的家国情感和历史底蕴,近期,“春节——中国人庆祝传统新年的社会实践”也被联合国教科文组织列入人类非物质文化遗产代表作名录。面对首个世界“非遗版”春节,合合信息旗下扫描全能王发起了“扫描全能王春节还能这样用”新春扫描活动,用户可“花式”扫描与新春相关的“记忆符号”,助力“非遗”元素传承。春节是中华民间艺术的集中体现,围绕着辞旧迎新、团圆和
- 大语言模型原理与工程实践:预训练数据构建
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:预训练数据构建1.背景介绍大语言模型(LargeLanguageModels,LLMs)近年来在自然语言处理(NLP)领域取得了显著的进展。诸如GPT-3、BERT等模型在各种任务中表现出色,从文本生成到情感分析,再到机器翻译,几乎无所不能。这些模型的成功很大程度上依赖于预训练数据的质量和规模。预训练数据的构建不仅影响模型的性能,还决定了模型的泛化能力和应用范围。在本文中
- 大语言模型原理与工程实践:网页数据
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:网页数据1.背景介绍在当今信息爆炸的时代,网页数据成为了大数据的重要来源之一。网页数据不仅包含了丰富的文本信息,还包括了图像、视频、音频等多媒体内容。大语言模型(LargeLanguageModels,LLMs)作为自然语言处理(NLP)领域的前沿技术,能够从海量的网页数据中提取有价值的信息,进行文本生成、情感分析、问答系统等多种任务。大语言模型的成功离不开深度学习技术的
- 用Python爬虫获取微博热搜词:数据抓取、分析与可视化全流程
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言selenium
引言微博作为中国最受欢迎的社交平台之一,每时每刻都在更新着海量的内容。其中,微博热搜词反映了用户关注的热点话题、社会事件及潮流趋势。对于数据分析、情感分析以及趋势预测等领域,获取微博热搜数据是一个非常有价值的任务。在本篇博客中,我们将详细介绍如何使用Python爬虫技术获取微博的热搜词,并进行数据分析和可视化。通过全流程的讲解,帮助你了解如何通过爬虫技术抓取并分析微博热搜词数据。一、爬虫技术概述与
- 海尔 F231ZC 随身 WiFi 刷机升级全攻略
虎王科技
golang后端
随身WiFi相关(程序+源码+工具+调试部署+开发环境)总共500多GB以上,文章末尾可获取,在最后面了。技术来自酷安论坛本文进攻学习研究自娱自乐在快节奏的现代生活中,网络连接已成为我们不可或缺的一部分。无论是商务出行还是日常休闲,随身WiFi设备都能为我们提供随时随地的上网服务。而海尔F231ZC作为一款备受关注的随身WiFi产品,其性能与功能也在不断更新和优化。本文将为您详细介绍海尔F231Z
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc