网站全国IP访问大屏幕显示

wKioL1Ve6rbArH1LAAPhCQK3s3g838.jpg

   接触Python有一段时间了,经常用来做一些好玩的事,前几天跟领导聊天说到,要是能够实现全国各地访问流量的显示,那就最好了,刚好要申请一些大屏幕来,所以就想到了做这个。确实稍微大点的公司都有这类东西,确实很酷炫了,自己也搞一个这样的。下面说一下实现过程:


1、首先是数据:采集的话我选择的是读取nginx日志。可以提供的思路是,我们选择同一收集的方式,收集到大数据分析机器(同意收集的工具还是很多的,比如rsyslog),然后通过正则或者一类东西筛选出我们需要的IP(当然日志肯定是按天切割的):

2、收集到的数据,通过调用公网的IP查询接口进行筛选,筛选,找出对应的城市、入库

3、最后就是前端展示了,这里我选用的是百度的echarts,百度已经提供了比较完善的API和说明文档,自己去阅读就好。


给一下前端的代码:

<!DOCTYPE html>
<head>
    <meta charset="utf-8">
    <title>ECharts</title>
</head>
<body>
    <!-- 为ECharts准备一个具备大小(宽高)的Dom -->
    <div id="main" style="height:800px" ></div>
    <!-- ECharts单文件引入 -->
    <script src="http://echarts.baidu.com/build/dist/echarts.js"></script>
    <script type="text/javascript">
        // 路径配置
        require.config({
            paths: {
                echarts: 'http://echarts.baidu.com/build/dist'
            }
        });
        
        // 使用
        require(
            [
                'echarts',
                'echarts/chart/map' 
            ],
            function (ec) {
                // 基于准备好的dom,初始化echarts图表
                var myChart = ec.init(document.getElementById('main')); 
                
                var option = {
    backgroundColor: '#1b1b1b',
    color: ['gold','aqua','lime'],
    title : {
        text: '众划算',
        subtext:'全国各地访问数据',
        x:'center',
        textStyle : {
            color: '#fff'
        }
    },
    tooltip : {
        trigger: 'item',
        formatter: '{b}'
    },
    legend: {
        orient: 'vertical',
        x:'left',
        data:['北京 Top10'],
        selectedMode: 'single',
        selected:{
            '上海 Top10' : false,
            '广州 Top10' : false
        },
        textStyle : {
            color: '#fff'
        }
    },
    toolbox: {
        show : true,
        orient : 'vertical',
        x: 'right',
        y: 'center',
        feature : {
            mark : {show: true},
            dataView : {show: true, readOnly: false},
            restore : {show: true},
            saveAsImage : {show: true}
        }
    },
    dataRange: {
        min : 0,
        max : 100,
        calculable : true,
        color: ['#ff3333', 'orange', 'yellow','lime','aqua'],
        textStyle:{
            color:'#fff'
        }
    },
    series : [
        {
            name: '全国',
            type: 'map',
            roam: true,
            hoverable: false,
            mapType: 'china',
            itemStyle:{
                normal:{
                    borderColor:'rgba(100,149,237,1)',
                    borderWidth:0.5,
                    areaStyle:{
                        color: '#1b1b1b'
                    }
                }
            },
            data:[],
            markLine : {
                smooth:true,
                symbol: ['none', 'circle'],  
                symbolSize : 1,
                itemStyle : {
                    normal: {
                        color:'#fff',
                        borderWidth:1,
                        borderColor:'rgba(30,144,255,0.5)'
                    }
                },
                data : [
                    [{name:'北京'},{name:'内蒙古'}],
                    [{name:'北京'},{name:'北海'}],
                    [{name:'北京'},{name:'广东'}],
                    [{name:'北京'},{name:'河南'}],
                    [{name:'北京'},{name:'吉林'}],
                    [{name:'北京'},{name:'长治'}],
                    [{name:'北京'},{name:'重庆'}],
                    [{name:'北京'},{name:'湖南'}], 
                    [{name:'北京'},{name:'常州'}],
                    [{name:'北京'},{name:'丹东'}],
                    [{name:'北京'},{name:'辽宁'}],
                    [{name:'北京'},{name:'东营'}],
                    [{name:'北京'},{name:'延安'}],
                    [{name:'北京'},{name:'福建'}],
                    [{name:'北京'},{name:'海口'}],
                    [{name:'北京'},{name:'呼和浩特'}],
                    [{name:'北京'},{name:'安徽'}],
                    [{name:'北京'},{name:'杭州'}],
                    [{name:'北京'},{name:'黑龙江'}],
                    [{name:'北京'},{name:'舟山'}],
                    [{name:'北京'},{name:'银川'}],
                    [{name:'北京'},{name:'衢州'}],
                    [{name:'北京'},{name:'江西'}],
                    [{name:'北京'},{name:'云南'}],
                    [{name:'北京'},{name:'贵州'}],
                    [{name:'北京'},{name:'甘肃'}],
                    [{name:'北京'},{name:'广西'}],
                    [{name:'北京'},{name:'拉萨'}],
                    [{name:'北京'},{name:'连云港'}],
                    [{name:'北京'},{name:'临沂'}],
                    [{name:'北京'},{name:'柳州'}],
                    [{name:'北京'},{name:'宁波'}],
                    [{name:'北京'},{name:'南京'}],
                    [{name:'北京'},{name:'南宁'}],
                    [{name:'北京'},{name:'江苏'}],
                    [{name:'北京'},{name:'上海'}],
                    [{name:'北京'},{name:'沈阳'}],
                    [{name:'北京'},{name:'陕西'}],
                    [{name:'北京'},{name:'汕头'}],
                    [{name:'北京'},{name:'深圳'}],
                    [{name:'北京'},{name:'青岛'}],
                    [{name:'北京'},{name:'山东'}],
                    [{name:'北京'},{name:'山西'}],
                    [{name:'北京'},{name:'乌鲁木齐'}],
                    [{name:'北京'},{name:'潍坊'}],
                    [{name:'北京'},{name:'威海'}],
                    [{name:'北京'},{name:'浙江'}], 
                    [{name:'北京'},{name:'无锡'}],
                    [{name:'北京'},{name:'厦门'}],
                    [{name:'北京'},{name:'西宁'}],
                    [{name:'北京'},{name:'徐州'}],
                    [{name:'北京'},{name:'烟台'}],
                    [{name:'北京'},{name:'盐城'}],
                    [{name:'北京'},{name:'珠海'}],
                    [{name:'北京'},{name:'香港'}],
                    [{name:'北京'},{name:'湖北'}],
        
                ],
            },
            geoCoord: {
                '上海': [121.4648,31.2891],
                '东莞': [113.8953,22.901],
                '东营': [118.7073,37.5513],
                '中山': [113.4229,22.478],
                '临汾': [111.4783,36.1615],
                '临沂': [118.3118,35.2936],
                '丹东': [124.541,40.4242],
                '丽水': [119.5642,28.1854],
                '乌鲁木齐': [87.9236,43.5883],
                '佛山': [112.8955,23.1097],
                '河北': [115.0488,39.0948],
                '甘肃': [103.5901,36.3043],
                '内蒙古': [110.3467,41.4899],
                '北京': [116.4551,40.2539],
                '北海': [109.314,21.6211],
                '南京': [118.8062,31.9208],
                '南宁': [108.479,23.1152],
                '广西': [108.479,23.1154],
                '江西': [116.0046,28.6633],
                '江苏': [121.1023,32.1625],
                '厦门': [118.1689,24.6478],
                '台州': [121.1353,28.6688],
                '安徽': [117.29,32.0581],
                '呼和浩特': [111.4124,40.4901],
                '咸阳': [108.4131,34.8706],
                '黑龙江': [127.9688,45.368],
                '唐山': [118.4766,39.6826],
                '嘉兴': [120.9155,30.6354],
                '大同': [113.7854,39.8035],
                '辽宁': [122.2229,39.4409],
                '天津': [117.4219,39.4189],
                '山西': [112.3352,37.9413],
                '威海': [121.9482,37.1393],
                '宁波': [121.5967,29.6466],
                '宝鸡': [107.1826,34.3433],
                '宿迁': [118.5535,33.7775],
                '常州': [119.4543,31.5582],
                '广东': [113.5107,23.2196],
                '香港': [113.5107,31.3569],
                '廊坊': [116.521,39.0509],
                '延安': [109.1052,36.4252],
                '张家口': [115.1477,40.8527],
                '徐州': [117.5208,34.3268],
                '德州': [116.6858,37.2107],
                '惠州': [114.6204,23.1647],
                '四川': [103.9526,30.7617],
                '扬州': [119.4653,32.8162],
                '承德': [117.5757,41.4075],
                '拉萨': [91.1865,30.1465],
                '无锡': [120.3442,31.5527],
                '日照': [119.2786,35.5023],
                '云南': [102.9199,25.4663],
                '杭州': [119.5313,29.8773],
                '枣庄': [117.323,34.8926],
                '柳州': [109.3799,24.9774],
                '株洲': [113.5327,27.0319],
                '湖北': [114.3896,30.6628],
                '汕头': [117.1692,23.3405],
                '江门': [112.6318,22.1484],
                '沈阳': [123.1238,42.1216],
                '沧州': [116.8286,38.2104],
                '河源': [114.917,23.9722],
                '泉州': [118.3228,25.1147],
                '泰安': [117.0264,36.0516],
                '泰州': [120.0586,32.5525],
                '山东': [117.1582,36.8701],
                '济宁': [116.8286,35.3375],
                '海口': [110.3893,19.8516],
                '淄博': [118.0371,36.6064],
                '淮安': [118.927,33.4039],
                '深圳': [114.5435,22.5439],
                '清远': [112.9175,24.3292],
                '浙江': [120.498,27.8119],
                '渭南': [109.7864,35.0299],
                '湖州': [119.8608,30.7782],
                '湘潭': [112.5439,27.7075],
                '滨州': [117.8174,37.4963],
                '潍坊': [119.0918,36.524],
                '烟台': [120.7397,37.5128],
                '玉溪': [101.9312,23.8898],
                '珠海': [113.7305,22.1155],
                '盐城': [120.2234,33.5577],
                '盘锦': [121.9482,41.0449],
                '石家庄': [114.4995,38.1006],
                '福建': [119.4543,25.9222],
                '秦皇岛': [119.2126,40.0232],
                '绍兴': [120.564,29.7565],
                '聊城': [115.9167,36.4032],
                '肇庆': [112.1265,23.5822],
                '舟山': [122.2559,30.2234],
                '苏州': [120.6519,31.3989],
                '莱芜': [117.6526,36.2714],
                '菏泽': [115.6201,35.2057],
                '营口': [122.4316,40.4297],
                '葫芦岛': [120.1575,40.578],
                '衡水': [115.8838,37.7161],
                '衢州': [118.6853,28.8666],
                '西宁': [101.4038,36.8207],
                '陕西': [109.1162,34.2004],
                '贵州': [106.6992,26.7682],
                '连云港': [119.1248,34.552],
                '邢台': [114.8071,37.2821],
                '邯郸': [114.4775,36.535],
                '河南': [113.4668,34.6234],
                '鄂尔多斯': [108.9734,39.2487],
                '重庆': [107.7539,30.1904],
                '金华': [120.0037,29.1028],
                '铜川': [109.0393,35.1947],
                '银川': [106.3586,38.1775],
                '镇江': [119.4763,31.9702],
                '吉林': [125.8154,44.2584],
                '湖南': [113.0823,28.2568],
                '长治': [112.8625,36.4746],
                '阳泉': [113.4778,38.0951],
                '青岛': [120.4651,36.3373],
                '韶关': [113.7964,24.7028]
            }
        },
        {
            name: '北京 Top10',
            type: 'map',
            mapType: 'china',
            data:[],
            markLine : {
                smooth:true,
                effect : {
                    show: true,
                    scaleSize: 1,
                    period: 30,
                    color: '#fff',
                    shadowBlur: 10
                },
                itemStyle : {
                    normal: {
                        borderWidth:1,
                        lineStyle: {
                            type: 'solid',
                            shadowBlur: 10
                        }
                    }
                },
                data : [
                        {%for x in all_data%}
                    [{name:'北京'}, {name:'{{x.city}}',value:{{x.num}}}],
                        {%endfor%} 
                ]
            },
            markPoint : {
                symbol:'emptyCircle',
                symbolSize : function (v){
                    return 10 + v/10
                },
                effect : {
                    show: true,
                    shadowBlur : 0
                },
                itemStyle:{
                    normal:{
                        label:{show:false}
                    },
                    emphasis: {
                        label:{position:'top'}
                    }
                },
                data : 
                         [  
                         {%for i in all_data%}
                        {name:'{{i.city}}',value:{{i.num}}},
                         {%endfor%}
                        ]  
            }
        },
       
    ]
};
     
        
                // 为echarts对象加载数据 
                myChart.setOption(option); 
            }
        );
    </script>
</body>

  后端的操作,其实也可以是用saltstack远程分析nginx脚本,性能不影响web服务器的话,直接远程入库就好。

你可能感兴趣的:(接口,百度,网站,流量,大屏幕)