用kzalloc申请内存的时候, 效果等同于先是用 kmalloc() 申请空间 , 然后用 memset() 来初始化 ,所有申请的元素都被初始化为 0.
- /**
- * kzalloc - allocate memory. The memory is set to zero.
- * @size: how many bytes of memory are required.
- * @flags: the type of memory to allocate (see kmalloc).
- */
- static inline void *kzalloc(size_t size, gfp_t flags)
- {
- return kmalloc(size, flags | __GFP_ZERO);
- }
kzalloc 函数是带参数调用kmalloc函数,添加的参数是或了标志位__GFP_ZERO,
- void *__kmalloc(size_t size, gfp_t flags)
- {
- struct kmem_cache *s;
- void *ret;
- if (unlikely(size > SLUB_MAX_SIZE))
- return kmalloc_large(size, flags);
- s = get_slab(size, flags);
- if (unlikely(ZERO_OR_NULL_PTR(s)))
- return s;
- ret = slab_alloc(s, flags, -1, _RET_IP_);
- trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
- return ret;
- }
这个函数调用trace_kmalloc,flags参数不变,继续往里面可以看到
- static __always_inline void *slab_alloc(struct kmem_cache *s,
- gfp_t gfpflags, int node, unsigned long addr)
- {
- void **object;
- struct kmem_cache_cpu *c;
- unsigned long flags;
- unsigned int objsize;
- gfpflags &= gfp_allowed_mask;
- lockdep_trace_alloc(gfpflags);
- might_sleep_if(gfpflags & __GFP_WAIT);
- if (should_failslab(s->objsize, gfpflags))
- return NULL;
- local_irq_save(flags);
- c = get_cpu_slab(s, smp_processor_id());
- objsize = c->objsize;
- if (unlikely(!c->freelist || !node_match(c, node)))
- object = __slab_alloc(s, gfpflags, node, addr, c);
- else {
- object = c->freelist;
- c->freelist = object[c->offset];
- stat(c, ALLOC_FASTPATH);
- }
- local_irq_restore(flags);
- if (unlikely((gfpflags & __GFP_ZERO) && object))
- memset(object, 0, objsize);
- kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
- kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
- return object;
- }
这里主要判断两个标志,WAIT和ZERO,和本文有关的关键代码就是
- if (unlikely((gfpflags & __GFP_ZERO) && object)) memset(object, 0, objsize);
到此,这个函数区别于kmalloc的地方就清楚了
kmalloc 函数详解
#include <linux/slab.h> void *kmalloc(size_t size, int flags);
给 kmalloc 的第一个参数是要分配的块的大小. 第 2 个参数, 分配标志, 非常有趣, 因为它以几个方式控制 kmalloc 的行为.
最一般使用的标志, GFP_KERNEL, 意思是这个分配((内部最终通过调用 __get_free_pages 来进行, 它是 GFP_ 前缀的来源) 代表运行在内核空间的进程而进行的. 换句话说, 这意味着调用函数是代表一个进程在执行一个系统调用. 使用 GFP_KENRL 意味着 kmalloc 能够使当前进程在少内存的情况下睡眠来等待一页. 一个使用 GFP_KERNEL 来分配内存的函数必须, 因此, 是可重入的并且不能在原子上下文中运行. 当当前进程睡眠, 内核采取正确的动作来定位一些空闲内存, 或者通过刷新缓存到磁盘或者交换出去一个用户进程的内存.
GFP_KERNEL 不一直是使用的正确分配标志; 有时 kmalloc 从一个进程的上下文的外部调用. 例如, 这类的调用可能发生在中断处理, tasklet, 和内核定时器中. 在这个情况下, 当前进程不应当被置为睡眠, 并且驱动应当使用一个 GFP_ATOMIC 标志来代替. 内核正常地试图保持一些空闲页以便来满足原子的分配. 当使用 GFP_ATOMIC 时, kmalloc 能够使用甚至最后一个空闲页. 如果这最后一个空闲页不存在, 但是, 分配失败.
其他用来代替或者增添 GFP_KERNEL 和 GFP_ATOMIC 的标志, 尽管它们 2 个涵盖大部分设备驱动的需要. 所有的标志定义在 <linux/gfp.h>, 并且每个标志用一个双下划线做前缀, 例如 __GFP_DMA. 另外, 有符号代表常常使用的标志组合; 这些缺乏前缀并且有时被称为分配优先级. 后者包括:
上面列出的这些分配标志可以是下列标志的相或来作为参数, 这些标志改变这些分配如何进行:
- static inline struct page * alloc_pages(unsigned int gfp_mask, unsigned int order)
- {
- /*
- * Gets optimized away by the compiler.
- */
- if (order >= MAX_ORDER)
- return NULL;
- return _alloc_pages(gfp_mask, order);
- }
alloc_pages最大分配页面数为512个,则可用内存数最大为2^9*4K=2M