1、原理简介
乘法器的另一种实现思想是采用ROM的方式,即将被乘数和乘数连接起来拼成地址,把两者所有可能的乘积按照地址放在ROM的地址空间中,两个数相乘时,根据两者构成的地址从ROM中读取乘积结果。ROM可采用分布式逻辑资源实现(用于存储数据量小的情况比较合适),也可采用嵌入式BRAM实现(用于存储量数据大的情况比较合适)。
两个N-bit的二进制数相乘,其结果为2N-bit。这意味着ROM的深度为2的2N次方,宽度为2N。以两个4-bit数相乘为例,其存储空间的大小为256x8-bit(256为深度,8为宽度),显然,随着位宽的增加存储空间将以指数速度膨胀。
改进方法:将被乘数和乘数进行位分解,即将大位宽的数分解为多个小位宽的数来分别相乘。例如两个4-bit数相乘,可将4-bit数分解成两个2-bit数,为了保证最终乘积结果的正确性,需要对中间结果进行移位。为方便起见,以两个无符号二进制数1101(对应十进制为11)和0110(对应十进制数为0110)相乘为例。其相乘位分解处理流程如下图所示。
采用的ROM深度为16,宽度为4。存储的内容为两个无符号数相乘的结果。地址及其对应的存储内容如下:
地址
|
0000
|
0001
|
0010
|
0011
|
0100
|
0101
|
0110
|
0111
|
1000
|
1001
|
1010
|
1011
|
1100
|
1101
|
1110
|
1111
|
内容(十进制)
|
0
|
0
|
0
|
0
|
0
|
1
|
2
|
3
|
0
|
2
|
4
|
6
|
0
|
3
|
6
|
9
|
内容(十进制)
|
0000
|
0000
|
0000
|
0000
|
0000
|
0001
|
0010
|
0011
|
0000
|
0010
|
0100
|
0110
|
0000
|
0011
|
0110
|
1001
|
2、verilog代码实现
2.1节介绍ROM使用Distributed Memory Generator生成的IP核。2.2节介绍使用Xilinx原语生成的ROM(其实使用的也是分布式资源)。Block Memeory Generator生成的IP核使用的是BlockRAM,当存储大量数据时,使用比较方便,和Distributed Memory Generator类似,不再详细介绍。
2.1 ROM采用分布式资源生成的IP核
设置ROM的位宽,深度等。
ROM进行初始化,采用coe文件。
coe文件的内容为:
MEMORY_INITIALIZATION_RADIX=10;
MEMORY_INITIALIZATION_VECTOR=
0,
0,
0,
0,
0,
1,
2,
3,
0,
2,
4,
6,
0,
3,
6,
9;
说明:MEMORY_INITIALIZATION_RADIX=10,表明下面的数据为10进制,还可以取值2,8,16。
MEMORY_INITIALIZATION_VECTOR=,后面的内容依次为地址(0-15)所存储的内容,中间用逗号分隔,最后用分号。
最后生成ROM核。
verilog代码实现
module rom_top(
input clk,
input rst_n,
input [3:0] a,
input [3:0] b,
output [7:0] c
);
wire [3:0] spo0,spo1,spo2,spo3;
wire [3:0] a0,a1,a2,a3;
assign a0={a[3:2],b[3:2]};
assign a1={a[3:2],b[1:0]};
assign a2={a[1:0],b[3:2]};
assign a3={a[1:0],b[1:0]};
reg [7:0] spo0_r,spo1_r,spo2_r,spo3_r;
always@(posedge clk) begin
if(!rst_n) begin
spo0_r<=0;spo1_r<=0;spo2_r<=0;spo3_r<=0;
end
else begin
spo0_r<={spo0,4'b0000};
spo1_r<={2'b00,spo1,2'b00};
spo2_r<={2'b00,spo2,2'b00};
spo3_r<={spo3};
end
end
assign c=(spo0_r+spo1_r)+(spo2_r+spo3_r);
// Instantiate the Unit Under Test (UUT)
rom uut0 ( //rom为生成的IP核
.a(a0),
.spo(spo0)
);
rom uut1 (
.a(a1),
.spo(spo1)
);
rom uut2 (
.a(a2),
.spo(spo2)
);
rom uut3 (
.a(a3),
.spo(spo3)
);
endmodule
testbench文件
module romtop_tb;
// Inputs
reg clk;
reg rst_n;
reg [3:0] a;
reg [3:0] b;
// Outputs
wire [7:0] c;
// Instantiate the Unit Under Test (UUT)
rom_top uut (
.clk(clk),
.rst_n(rst_n),
.a(a),
.b(b),
.c(c)
);
always #5 clk = ~clk;
initial begin
// Initialize Inputs
clk = 0;
rst_n = 0;
a = 0;
b = 0;
// Wait 100 ns for global reset to finish
#100;
rst_n=1;
#10;
#3;
a=2;b=6;
#10;
a=3;b=7;
#10;
a=15;b=9;
#10;
a=12;b=11;
#10;
a=6;b=7;
#100 $stop;
// Add stimulus here
end
endmodule
在modelsim中仿真生成的波形图:axb=c.
2x6=12 3x7=21 15x9=135
2.2 ROM采用Xilinx原语生成
verilog代码
module d_rom_top(
input clk,
input rst_n,
input [3:0] a,
input [3:0] b,
output [7:0] c
);
wire [3:0] addra,addrb,addrc,addrd;
assign addra={a[3:2],b[3:2]};
assign addrb={a[3:2],b[1:0]};
assign addrc={a[1:0],b[3:2]};
assign addrd={a[1:0],b[1:0]};
wire [3:0] Oa,Ob,Oc,Od;
reg [7:0] Oa_r,Ob_r,Oc_r,Od_r;
always@(posedge clk)begin
if(!rst_n) begin
Oa_r<=0;Ob_r<=0;Oc_r<=0;Od_r<=0;
end
else begin
Oa_r<={Oa,4'b0000};
Ob_r<={2'b00,Ob,2'b00};
Oc_r<={2'b00,Oc,2'b00};
Od_r<={4'b0000,Od};
end
end
assign c=Oa_r+Ob_r+Oc_r+Od_r;
genvar i0,i1,i2,i3;
generate
for(i0=0;i0<4;i0=i0+1) begin :rom_unita
if(i0==0) begin
ROM16X1 #(.INIT(16'b1010_0000_1010_0000))
rom_0 (.O(Oa[0]),.A0(addra[0]),.A1(addra[1]),.A2(addra[2]),.A3(addra[3]));
end
else if(i0==1)begin
ROM16X1 #(.INIT(16'b0110_1010_1100_0000))
rom_1 (.O(Oa[1]),.A0(addra[0]),.A1(addra[1]),.A2(addra[2]),.A3(addra[3]));
end
else if(i0==2)begin
ROM16X1 #(.INIT(16'b0100_1100_0000_0000))
rom_2 (.O(Oa[2]),.A0(addra[0]),.A1(addra[1]),.A2(addra[2]),.A3(addra[3]));
end
else begin
ROM16X1 #(.INIT(16'b1000_0000_0000_0000))
rom_3 (.O(Oa[3]),.A0(addra[0]),.A1(addra[1]),.A2(addra[2]),.A3(addra[3]));
end
end
endgenerate
generate
for(i1=0;i1<4;i1=i1+1) begin :rom_unitb
if(i1==0) begin
ROM16X1 #(.INIT(16'b1010_0000_1010_0000))
rom_0 (.O(Ob[0]),.A0(addrb[0]),.A1(addrb[1]),.A2(addrb[2]),.A3(addrb[3]));
end
else if(i1==1)begin
ROM16X1 #(.INIT(16'b0110_1010_1100_0000))
rom_1 (.O(Ob[1]),.A0(addrb[0]),.A1(addrb[1]),.A2(addrb[2]),.A3(addrb[3]));
end
else if(i1==2)begin
ROM16X1 #(.INIT(16'b0100_1100_0000_0000))
rom_2 (.O(Ob[2]),.A0(addrb[0]),.A1(addrb[1]),.A2(addrb[2]),.A3(addrb[3]));
end
else begin
ROM16X1 #(.INIT(16'b1000_0000_0000_0000))
rom_3 (.O(Ob[3]),.A0(addrb[0]),.A1(addrb[1]),.A2(addrb[2]),.A3(addrb[3]));
end
end
endgenerate
generate
for(i2=0;i2<4;i2=i2+1) begin :rom_unitc
if(i2==0) begin
ROM16X1 #(.INIT(16'b1010_0000_1010_0000))
rom_0 (.O(Oc[0]),.A0(addrc[0]),.A1(addrc[1]),.A2(addrc[2]),.A3(addrc[3]));
end
else if(i2==1)begin
ROM16X1 #(.INIT(16'b0110_1010_1100_0000))
rom_1 (.O(Oc[1]),.A0(addrc[0]),.A1(addrc[1]),.A2(addrc[2]),.A3(addrc[3]));
end
else if(i2==2)begin
ROM16X1 #(.INIT(16'b0100_1100_0000_0000))
rom_2 (.O(Oc[2]),.A0(addrc[0]),.A1(addrc[1]),.A2(addrc[2]),.A3(addrc[3]));
end
else begin
ROM16X1 #(.INIT(16'b1000_0000_0000_0000))
rom_3 (.O(Oc[3]),.A0(addrc[0]),.A1(addrc[1]),.A2(addrc[2]),.A3(addrc[3]));
end
end
endgenerate
generate
for(i3=0;i3<4;i3=i3+1) begin :rom_unitd
if(i3==0) begin
ROM16X1 #(.INIT(16'b1010_0000_1010_0000))
rom_0 (.O(Od[0]),.A0(addrd[0]),.A1(addrd[1]),.A2(addrd[2]),.A3(addrd[3]));
end
else if(i3==1)begin
ROM16X1 #(.INIT(16'b0110_1010_1100_0000))
rom_1 (.O(Od[1]),.A0(addrd[0]),.A1(addrd[1]),.A2(addrd[2]),.A3(addrd[3]));
end
else if(i3==2)begin
ROM16X1 #(.INIT(16'b0100_1100_0000_0000))
rom_2 (.O(Od[2]),.A0(addrd[0]),.A1(addrd[1]),.A2(addrd[2]),.A3(addrd[3]));
end
else begin
ROM16X1 #(.INIT(16'b1000_0000_0000_0000))
rom_3 (.O(Od[3]),.A0(addrd[0]),.A1(addrd[1]),.A2(addrd[2]),.A3(addrd[3]));
end
end
endgenerate
endmodule
testbench:
module d_rom_top_tb;
// Inputs
reg clk;
reg rst_n;
reg [3:0] a;
reg [3:0] b;
// Outputs
wire [7:0] c;
// Instantiate the Unit Under Test (UUT)
d_rom_top uut (
.clk(clk),
.rst_n(rst_n),
.a(a),
.b(b),
.c(c)
);
always #5 clk=~clk;
initial begin
// Initialize Inputs
clk = 0;
rst_n = 0;
a = 0;
b = 0;
// Wait 100 ns for global reset to finish
#100;
rst_n=1;
#10;
#3;
a=2;b=6;
#10;
a=3;b=7;
#10;
a=15;b=9;
#10;
a=12;b=11;
#10;
a=6;b=7;
end
endmodule
仿真图形: