- 理解不同层的表示(layer representations)
科学禅道
高维表示人工智能深度学习
在机器学习和深度学习领域,特别是在处理音频和自然语言处理(NLP)任务时,"层的表示"(layerrepresentations)通常是指神经网络不同层在处理输入数据时生成的特征或嵌入。这些表示捕获了输入数据的不同层次的信息。1.层的表示(layerrepresentations)为了更好地理解这一概念,我们可以从以下几个方面进行解释:1.深度神经网络结构深度神经网络(DNN)通常由多个层组成,每
- 安卓多屏互动Presentation
Code_onepage
AndroidJavaandroidandroidstudio
安卓多屏互动Presentation设备系统版本开发者模式拟辅助屏幕功能Presentation显示方式Presentation创建搭建Presentation显示环境绑定Presentation服务数据交互多屏显示性能分析CPU占用内存占用副屏不随主屏幕退出补充设备系统版本Android从4.2开始支持双屏显示,请确保minSdkVersion>=17开发者模式进入设备—设置—关于手机—版本号—
- embedding模型有哪些?如何选择合适的embedding模型?
行云流水AI笔记
embedding
embedding模型是一种将数据映射到低维空间的模型,常用于自然语言处理、推荐系统、图像识别等领域。以下是一些常见的embedding模型:Word2Vec:CBOW(ContinuousBag-of-Words):通过上下文预测中心词。Skip-Gram:通过中心词预测上下文。GloVe(GlobalVectorsforWordRepresentation):结合了词频统计和Word2Vec的
- End-To-End 之于推荐-kuaishou OneRec 笔记
ASKED_2019
RecSys笔记
核心思想OneRec提出了一种统一的生成式推荐系统架构,打破了传统“召回-粗排-精排”级联式推荐流程,使用单一生成模型同时完成召回与排序任务。该系统由快手团队研发,并成功部署于短视频主场景。OnlineA/BTest表现:模型总观看时长平均观看时长OneRec-1B+IPA+1.68%+6.56%一Input处理Userpositiveactionsequence,将短视频的多模态表征,通过量化的
- CVPR 2024 3D方向总汇包含(3DGS、三维重建、深度补全、深度估计、全景定位、表面重建和特征匹配等)
1、3D方向Rapid3DModelGenerationwithIntuitive3DInputInstantaneousPerceptionofMovingObjectsin3DNEAT:Distilling3DWireframesfromNeuralAttractionFields⭐codeSculptingHolistic3DRepresentationinContrastiveLangua
- 从0开始学前端 第七十二课 Node.js - 使用Express构建RESTful API
第七十二课:Node.js-使用Express构建RESTfulAPI学习目标理解RESTfulAPI的基本原则和优势。学习在Express中处理HTTP请求的方法。掌握如何格式化和发送JSON等格式的响应。学习RESTful路由设计的最佳实践。学习内容1.RESTfulAPI原则和优势REST(RepresentationalStateTransfer)是一种设计风格,用于网络应用程序的API设
- cnn 一维时序数据_AI顶会解读|时序动作分割与检测,附代码链接
时序动作分割与检测时序动作的分割与检测是视频计算机视觉技术的一大常规任务,对自动驾驶和机器人等应用至关重要,下面3篇论文是腾讯AILab在这一方向的探索成果。1.动作识别中的时序帧间差异表征学习TemporalDistinctRepresentationLearningforActionRecognition本文由腾讯AILab、腾讯优图实验室、新加坡南洋理工大学、美国纽约州立大学布法罗分校合作完
- 什么是MVP和MVC,它们有什么区别?
1010n111
mvc
什么是MVP和MVC,它们有什么区别?技术背景在软件开发中,为了实现代码的模块化、可维护性和可测试性,人们设计了许多架构模式。MVP(Model-View-Presenter)和MVC(Model-View-Controller)就是其中两种常见的架构模式,它们都旨在分离业务逻辑和展示逻辑,提高软件的可维护性和可扩展性。实现步骤MVP模式模型(Model):负责处理数据和业务逻辑。视图(View)
- WPF数据绑定简单使用
blade,
wpf
WPF(WindowsPresentationFoundation)是微软开发的一种用于构建桌面应用程序的UI框架。数据绑定是WPF中的一个核心概念,它允许开发者将UI元素与数据源进行关联,从而实现数据的自动同步和更新。数据绑定机制使得UI与业务逻辑的分离更加容易,提高了代码的可维护性和可扩展性。数据绑定的基本概念绑定源(Source):数据绑定的数据源,可以是CLR对象、集合、XML、数据库等。
- 在 WPF 中,绑定机制是如何工作的?WPF数据绑定机制解析
九鼎科技-Leo
C#.NetWPFwpfc#windows.net
在WPF(WindowsPresentationFoundation)中,数据绑定机制是其核心功能之一,广泛用于连接应用程序的UI(用户界面)和应用程序的业务逻辑层。数据绑定允许你将UI元素与数据源(如对象、集合或其他数据结构)连接起来,并使得数据更新时,UI能够自动同步变化。一、WPF数据绑定的历史背景WPF是Microsoft在2006年发布的Windows应用程序开发框架,它是对传统Wind
- Word2Vec 原理是什么
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonword2vec人工智能自然语言处理
Word2Vec原理是什么一、核心概念:从词语到向量的语义映射Word2Vec是2013年由Google提出的词嵌入(WordEmbedding)模型,其核心目标是将自然语言中的词语转换为稠密的连续向量(词向量),使向量空间中的距离能反映词语的语义相关性。本质:通过神经网络学习词语的分布式表示(DistributedRepresentation),打破传统one-hot编码“维度高、无语义关联”的
- 【可持续学习网络模型0】目前全球增量学习或持续学习研究现状
帮带做
人工智能学习python硕博论文创新持续学习增量学习神经网络
全球增量学习或持续学习研究现状一、全球研究现状综述(2025年主流)✅1.研究目标和挑战✅2.主流研究范式(按解决灾难性遗忘的策略分类)二、重点代表性方法简介(含通俗解释)1.**EWC(ElasticWeightConsolidation)**:2.**iCaRL(IncrementalClassifierandRepresentationLearning)**:3.**HAT(HardAtte
- Go语言网络编程:使用 net/http 构建 RESTful API
程序员爱钓鱼
前端数据库javascriptgolang开发语言
Go语言网络编程-使用net/http构建RESTfulAPI的内容。本章节将带你使用标准库构建一个简单清晰、符合REST风格的API接口服务。一、什么是RESTfulAPIREST(RepresentationalStateTransfer)是一种风格,通常遵循以下规范:动作方法描述获取资源GET/users、/users/1创建资源POST/users更新资源PUT/users/1删除资源DE
- 机器学习模型评估:ROC曲线
数字化与智能化
人工智能机器学习机器学习ROC曲线
一、ROC曲线讲解1、ROC概述ROC曲线(ReceiverOperatingCharacteristiccurve)是一种用于评估二分类模型性能的工具。它以假阳性率(FalsePositiveRate,FPR)为横坐标,真阳性率(TruePositiveRate,TPR)为纵坐标,绘制出的曲线。在二分类问题中,我们通常将一个类别定义为“正例”,另一个类别定义为“负例”。而模型的预测结果可以分为四
- django rest_framework
一.什么是RESTfulREST与技术无关,代表的是一种软件架构风格,REST是RepresentationalStateTransfer的简称,中文翻译为“表征状态转移”REST从资源的角度类审视整个网络,它将分布在网络中某个节点的资源通过URL进行标识,客户端应用通过URL来获取资源的表征,获得这些表征致使这些应用转变状态REST与技术无关,代表的是一种软件架构风格,REST是Represen
- NOI / 1.4编程基础之逻辑表达式与条件分支[1-10]
c++信息学奥赛
noi.openjudge算法noic++openjudeg
01:判断数正负描述给定一个整数N,判断其正负。输入一个整数N(-1090,输出positive;如果N=0,输出zero;如果N#includeusingnamespacestd;intmain(){intN;cin>>N;if(N>0){cout#include#includeusingnamespacestd;intmain(){doublea;cin>>a;if(a>=0){coutusi
- PHP大师之路:架构设计、高并发解决方案与前沿技术
seopthonshentong
php开发语言
在掌握了PHP基础、进阶知识和现代开发技术后,本文将带你探索PHP开发的专家级领域,包括大型系统架构设计、高并发解决方案和前沿技术应用。1.大型PHP应用架构设计分层架构实践php//典型分层架构示例//表现层(PresentationLayer)classUserController{publicfunction__construct(privateUserService$userService
- 【WRF实操】三层/四层嵌套网格设计-以重庆市主城区为例
WW、forever
WRF模型原理及应用WRF
目录概述三层嵌套网络设计-重庆市主城区基于QGIS中GIS4WRF插件设计嵌套网格四层嵌套网络设计-重庆市主城区基于QGIS中GIS4WRF插件设计嵌套网格ERA5输入数据下载-以2022年8月为例数据下载-ERA5hourlydataonpressurelevelsfrom1940topresent数据集2:ERA5hourlydataonsinglelevelsfrom1979topresen
- C++11 完美转发(Perfect Forwarding)
程序员乐逍遥
C++高手修炼营C/C++网络编程专题C/C++多线程编程专题c++开发语言froward
在现代C++中,完美转发(PerfectForwarding)是一个非常重要但又略显神秘的概念。它允许我们在模板函数中将参数“原封不动”地传递给另一个函数,保持其原始的值类别(左值/右值)、const属性等信息不变。完美转发是实现通用库函数、工厂模式、泛型封装器(如std::function、lambda表达式)以及智能指针构造函数的关键技术之一。一、什么是完美转发?✅定义完美转发是指:在函数模板
- 【深度学习pytorch-88】BERT
超华东算法王
DL-pytorch深度学习pytorchbert
BERT(BidirectionalEncoderRepresentationsfromTransformers)简介BERT是一种基于Transformer架构的预训练语言表示模型,旨在通过大规模无监督学习来提升下游自然语言处理(NLP)任务的效果。BERT由GoogleAI的研究人员于2018年提出,它在多个NLP任务上设立了新的最先进的性能基准。BERT的核心思想BERT的核心思想是通过预训
- 69 BERT预训练_BERT代码_by《李沐:动手学深度学习v2》pytorch版
醒了就刷牙
李沐动手学深度学习深度学习bertpytorch
系列文章目录文章目录系列文章目录BidirectionalEncoderRepresentationsfromTransformers(BERT)输入表示预训练任务掩蔽语言模型(MaskedLanguageModeling)下一句预测(NextSentencePrediction)整合代码小结练习BidirectionalEncoderRepresentationsfromTransformers
- ERR:The required column ‘Bomld‘ was not present in the results of a ‘FromSql‘ operation.
沐雨潇竹
错误笔记数据库
Therequiredcolumn‘Bomld’wasnotpresentintheresultsofa‘FromSql’operation.结合SQL语句来看,错误非常明确:你的模型类中包含一个名为BomId(或误拼为Bomld)的属性,而你执行的FromSqlRaw查询并没有返回这个字段,所以EFCore报错。你的问题出在两处可能:✅1.模型类中包含了BomId字段,但SQL中没有返回该列你执
- 华为OD机考2025B卷 - 考勤信息 (Java & Python& JS & C++ & C )
算法大师
最新华为OD机试真题华为OD机试真题(Java/JS/Py/C)华为odjavapythonjavascript华为OD机考2025B卷c++
最新华为OD机试真题目录:点击查看目录华为OD面试真题精选:点击立即查看2025华为od机试2025B卷-华为机考OD2025年B卷题目描述公司用一个字符串来表示员工的出勤信息absent:缺勤late:迟到leaveearly:早退present:正常上班现需根据员工出勤信息,判断本次是否能获得出勤奖,能获得出勤奖的条件如下:缺勤不超过一次;没有连续的迟到/早退;任意连续7次考勤,缺勤/迟到/早
- Java Set 接口底层源码深度解析
hqxstudying
java算法数据结构链表
在Java中,Set接口的核心特性是不允许存储重复元素,这一特性的实现依赖于各具体实现类的底层数据结构和算法。以下从元素添加、删除、查找的实现细节,以及性能优化和设计模式等角度进行更深入的剖析。一、HashSet源码深度解析1.元素添加机制(add(Ee))publicbooleanadd(Ee){returnmap.put(e,PRESENT)==null;}HashMap的put逻辑:计算哈希
- 论文学习笔记 | AAAI-2022 TS2Vec:实现时间序列通用表示
叶庭云
人工智能学习之路时间序列表征学习TS2Vec分层对比学习上下文一致性正样本选择策略
CSDN叶庭云:https://yetingyun.blog.csdn.net/APA引用格式:Yue,Z.,Wang,Y.,Duan,J.,Yang,T.,Huang,C.,Tong,Y.,&Xu,B.(2022,June).TS2Vec:Towardsuniversalrepresentationoftimeseries.InProceedingsoftheAAAIConferenceonAr
- 智能光学计算成像技术前沿体系解析
m0_75133639
光电光学成像光子学生物医学材料科学计算成像技术全息成像研究生
当前光学成像领域正经历以人工智能为驱动的范式变革。本知识体系涵盖以下核心模块:基础理论层从计算成像物理模型(含波前分析、图像传感器噪声建模)切入,建立光学-算法联合优化理论框架,重点解析正则化逆问题求解(如ADMM算法)与神经表示(NeuralRepresentations)等前沿数学工具。AI融合层深度剖析深度学习在成像中的革新应用:端到端光学设计:通过可微光学模型(衍射/折射/复杂透镜)实现硬
- tika将word转换为html,apache tika - Convert .docx to HTML using JAVA - Stack Overflow
weixin_39951930
Itriedconverting.doctoHTMLbyusingWordToHtmlConverteranditworkedperfectly.Butwhenitriedtoconvert.docxtoHTML,igotstuckwithit.Whatitried:Iusedthebelowcodetoconvert.docxtoHTML:InputStreaminput=TikaInputSt
- vitis dpu kernel编译和docker环境搭建
寒听雪落
linux
一,Vitis-AI简介1,Vitis-AI概述Vitis-AI在边缘计算设备的AI全栈部署框架中扮演了编译器端与后端的角色,接收前端DNN(DeepNeuralNetwork)框架训练后的网络参数IR(IntermediateRepresentation),并将其优化后编译并传递给后端。后端DNNDK(DeepNeuralNetworkDevelopmentKit)为Edge终端提供了驱动和AP
- OpenAI GPT LLMs 高级提示词工程方法汇总
lichunericli
人工智能自然语言处理prompt
原文地址:AnIntroductiontoPromptEngineeringforOpenAIGPTLLMsGithub:Prompt-Engineering-Intro2023年3月2日提示工程指南|PromptEngineeringGuideNaive提示词:带有提示的情感分类器prompt='''DecidewhetheraTweet'ssentimentispositive,neutral
- Present 轻量级加密算法 C#实现
炒酱
密码学算法密码学c#GUI轻量级分组密码
Present轻量级加密算法Present:一种轻量级分组密码我先用我粗糙的英语给大家翻译一下:摘要:随着AES的建立,对新块的需求密码已大大减少;几乎所有的分组密码应用程序AES是一个优秀和优选的选择。然而,尽管最近实施的进展,AES是不适合极受约束的环境,如RFID标签和传感器网络。在本文描述了一种超轻量级分组密码。安全性和硬件效率同样重要。
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多