- 芒格的“思维格栅“:构建全面的投资分析框架
AGI大模型与大数据研究院
DeepSeekai
芒格的"思维格栅":构建全面的投资分析框架关键词:芒格、思维格栅、投资分析框架、跨学科思维、投资决策摘要:本文深入探讨了芒格的“思维格栅”理论及其在构建全面投资分析框架中的应用。首先介绍了“思维格栅”理论的背景和重要性,接着阐述了其核心概念与联系,包括跨学科思维的原理和架构。通过详细讲解核心算法原理和具体操作步骤,结合数学模型和公式进行举例说明,帮助读者理解如何运用这一理论进行投资分析。随后通过项
- 模型部署实战:PyTorch生产化指南
小诸葛IT课堂
pytorch人工智能python
一、为什么要做模型部署?模型部署是将训练好的模型投入实际应用的关键步骤,涉及:模型格式转换(TorchScript/ONNX)性能优化(量化/剪枝)构建API服务移动端集成本章使用ResNet18实现图像分类,并演示完整部署流程。二、模型转换:TorchScript与ONNX1.准备预训练模型importtorchimporttorchvision#加载预训练模型model=torc
- Spring Boot 性能优化:如何解决高并发下的瓶颈问题?
zhyoobo
springboot性能优化后端
一、高并发场景的挑战与诊断方法论1.1典型性能瓶颈四层模型在2000+QPS的电商秒杀场景中,SpringBoot应用常面临四层压力传导:网络层瓶颈TCP连接耗尽导致SYN队列溢出(Linux默认仅1024个)SSL握手消耗大量CPU资源(RSA2048单次握手约需10ms)HTTP/1.1的队头阻塞问题(单个连接只能顺序处理请求)应用层瓶颈线程池配置不当引发的上下文切换风暴(默认Tomcat线程
- 算力技术演进与多场景融合路径
智能计算研究中心
其他
内容概要算力技术的演进正经历从异构计算到量子计算的范式跃迁。当前技术图谱中,芯片制程突破与架构创新持续推动算力密度提升,如5nm以下先进工艺与存算一体设计显著增强运算单元效率。与此同时,模型压缩、数据预处理等算法优化手段使单位算力产出提高30%以上。典型应用场景中,工业互联网通过自适应计算实现毫秒级实时控制,医疗影像领域借助分布式计算完成TB级数据处理,而智能安防系统依托边缘计算降低端到端时延至5
- 金融风控算法透明度与可解释性优化
智能计算研究中心
其他
内容概要金融风控算法的透明化研究面临模型复杂性提升与监管合规要求的双重挑战。随着深度学习框架在特征提取环节的广泛应用,算法可解释性与预测精度之间的平衡成为核心议题。本文从联邦学习架构下的数据协作机制出发,结合特征工程优化与超参数调整技术,系统性分析逻辑回归、随机森林等传统算法在召回率、F1值等关键指标上的表现差异。研究同时探讨数据预处理流程对风控决策鲁棒性的影响,并提出基于注意力机制的特征权重可视
- 联邦学习算法安全优化与可解释性研究
智能计算研究中心
其他
内容概要本研究围绕联邦学习算法的安全性优化与模型可解释性增强展开系统性探索。首先,针对联邦学习中数据隐私泄露与模型性能损耗的固有矛盾,提出一种融合差分隐私与动态权重聚合的协同优化框架,通过分层加密机制降低敏感信息暴露风险。其次,引入可解释性算法(如LIME与SHAP)构建透明化决策路径,结合注意力机制实现特征贡献度的可视化映射,有效提升模型在医疗影像异常检测与金融欺诈识别场景中的可信度。此外,研究
- DeepSeek多语言670亿参数高效创作解析
智能计算研究中心
其他
内容概要本文聚焦DeepSeek系列模型的核心技术突破与应用价值,通过解析其混合专家架构(MoE)的设计逻辑与670亿参数的规模化优势,揭示其在多语言处理、视觉语言理解及代码生成领域的创新表现。从技术特性出发,文章将对比OpenAI等主流模型的性能差异,探讨参数效率与计算资源优化如何支撑低成本、高精度的内容生成场景,例如学术论文写作、智能选题规划及SEO关键词拓展。同时,通过分析DeepSeekP
- 下一代模型技术演进与场景应用突破
智能计算研究中心
其他
内容概要当前模型技术正经历多维度的范式跃迁,可解释性模型与自动化机器学习(AutoML)成为突破传统黑箱困境的核心路径。在底层架构层面,边缘计算与量子计算的融合重构了算力分配模式,联邦学习技术则为跨域数据协作提供了安全可信的解决方案。主流框架如TensorFlow和PyTorch持续迭代优化能力,通过动态参数压缩与自适应超参数调优策略,显著提升模型部署效率。应用层创新呈现垂直化特征,医疗诊断模型通
- H800核心性能优化技术
智能计算研究中心
其他
内容概要作为新一代AI加速卡的核心创新载体,H800通过异构计算架构与动态能效管理技术的协同设计,实现了从硬件底层到应用层的系统性优化。其技术突破聚焦于张量核心重构带来的计算密度提升、混合精度运算对资源利用率的增强,以及智能散热方案在复杂负载场景下的稳定性保障。这些创新不仅显著提升了30%以上的能效比,更通过精细化任务调度机制,解决了深度学习训练中高并发数据处理与模型参数同步的效率瓶颈。值得关注的
- Qwen2-Audio:通义千问音频大模型技术解读
kakaZhui
音视频AIGC人工智能pythonchatgpt
引言:从llm到mlm(audio)大型语言模型(LLM)的发展日新月异,它们在文本理解、生成、推理等方面展现出惊人的能力。然而,交互模态不仅仅依赖于文字,语音、语调、环境音等听觉信息同样承载着丰富的内容。阿里巴巴通义千问团队,推出了Qwen-Audio系列模型,这里我们一起看下最新版本Qwen2-Audio。Qwen2-Audio不仅能够理解各种音频信号,还能根据语音指令做出文本回应,甚至可以进
- 【AI论文】RWKV-7“鹅”模型,具备富有表现力的动态状态演化能力
东临碣石82
人工智能
摘要:我们推出RWKV-7“鹅”,这是一种全新的序列建模架构,同时发布的还有预训练语言模型。在多语言任务中,这些模型在30亿参数规模下实现了下游性能的全新最优水平,并且在英语语言性能上,尽管训练所用的标记数量远少于其他顶尖30亿参数模型,但仍能与当前最优水平相媲美。然而,RWKV-7模型仅需常量内存使用和每个标记的常量推理时间。RWKV-7引入了一种新泛化的delta规则,该规则具有向量值门控和上
- Dify 项目开源大模型应用开发平台
魔王阿卡纳兹
IT杂谈开源项目观察开源difLLM开发平台
Dify是一款开源的大语言模型(LLM)应用开发平台,旨在简化生成式AI应用的创建、部署和持续优化流程。以下从多个维度对该项目进行详细介绍:一、项目定义与核心功能Dify的核心定位是结合后端即服务(BaaS)和LLMOps理念,为开发者提供从原型到生产的全生命周期支持。其核心功能包括:可视化工作流构建通过可视化画布(如ReactFlow)编排AI工作流,支持多步骤任务处理,例如文档解析、模型推理和
- 基于Python的金融领域AI训练数据抓取实战(完整技术解析)
海拥✘
python金融人工智能
项目背景与需求分析场景描述为训练一个覆盖全球金融市场的多模态大语言模型(LLM),需实时采集以下数据:全球30+主要证券交易所(NYSE、NASDAQ、LSE、TSE等)的上市公司公告企业财报PDF文档及结构化数据社交媒体舆情数据(Twitter、StockTwits)新闻媒体分析(Reuters、Bloomberg)技术挑战地理封锁:部分交易所(如日本TSE)仅允许本国IP访问历史数据动态反爬:
- 客户总是提出不合理的需求,如何破局?
在项目管理中,“客户提出不合理需求”是项目经理最常遇到的挑战之一。这些需求可能超出合同范围、违背技术可行性、突破预算或时间限制,甚至逻辑上自相矛盾。但真正的困境往往不在于需求本身是否合理,而在于如何平衡客户期望与项目边界,将对抗转化为合作。本文将从需求本质剖析、结构化应对策略到高阶破局思维,提供一套系统化的解决方案。一、需求“不合理”的本质诊断表象与根源的错位冰山模型:客户表面需求(如“界面要更酷
- Multi-view graph convolutional networks with attention mechanism
小源er
图论和图神经网络机器学习机器学习深度学习人工智能
摘要传统的图卷积网络关注于如何高效的探索不同阶跳数(hops)的邻居节点的信息。但是目前的基于GCN的图网络模型都是构建在固定邻接矩阵上的即实际图的一个拓扑视角。当数据包含噪声或者图不完备时,这种方式会限制模型的表达能力。由于数据的测量或者收集会不可避免的会出现错误,因此基于固定结构的图模型表达能力是不充分的。本文提出了基于注意力机制的多视图图卷积网络,将拓扑结构的多个视图和基于注意力的特征聚合策
- 探索 Tavily Search API:为 AI 提供快速准确的搜索结果
nseejrukjhad
人工智能python开发语言
引言在当今的技术时代,AI代理(如大型语言模型)日益需要实时、准确和事实性强的搜索结果。TavilySearchAPI就是为此而生的。这篇文章将介绍如何将TavilySearchAPI集成为一个检索器,使开发者可以在应用中快速获取所需信息。此外,我们将讨论这一集成过程中的挑战及其解决方案。主要内容1.TavilySearchAPI简介TavilySearchAPI是一个专门为AI代理设计的搜索引擎
- 使用 Tavily 搜索 API 获取实时精确搜索结果
fgayif
python数据库开发语言
技术背景介绍Tavily搜索API是一个专为AI代理(如大型语言模型)而设计的搜索引擎。它能够快速提供实时、准确且事实性强的搜索结果。这使得Tavily成为可以嵌入到AI应用中的理想工具,提升信息获取的效率和准确性。核心原理解析Tavily搜索API提供了异步的原生调用方式,可以返回包括标题、URL、内容和答案在内的数据。API可以根据需求设置不同的搜索深度和结果数量。通过与其他语言模型(如Ope
- 【手把手教学】DeepSeek官方搜索API博查本地使用指南:从原理到实战,全面解锁智能搜索!
BigNorthBear
python人工智能自然语言处理机器学习语言模型
前言:当大模型遇见本地搜索你是否遇到过这些问题?想在企业内网部署智能搜索,但担心数据泄露风险?需要定制搜索逻辑,但云端API灵活性不足?网络环境不稳定时,搜索服务频繁中断?博查AI搜索API的本地化方案完美解决了这些问题!通过将本地大模型与云端API结合,既能保障数据安全,又能享受实时搜索能力。本文将手把手教你如何实现这一技术方案,即使你是零基础开发者,也能轻松上手!一、本地化原理:为什么能“既本
- 车辆检测与识别:车辆分类_(9).车辆分类模型的评估与优化
zhubeibei168
机器人(二)分类数据挖掘人工智能计算机视觉机器学习视频监控
车辆分类模型的评估与优化在车辆检测与识别领域,车辆分类模型的评估与优化是确保模型性能和可靠性的关键步骤。本节将详细介绍如何评估车辆分类模型的性能,并提供一些优化技术,以提高模型的准确性和效率。模型评估指标1.准确率(Accuracy)准确率是最直观的评估指标,表示分类器正确分类的样本占总样本的比例。然而,在不平衡数据集上,准确率可能具有误导性。fromsklearn.metricsimportac
- YOLO11改进-模块-引入频率谱动态聚合模块FSDA 去除噪声
一勺汤
YOLOv11模型改进系列目标检测魔改模块YOLOYOLOv11YOLOv11改进改进
在图像去雾领域,深度学习在白天图像去雾方面成果显著,但夜间雾图研究较少。夜间雾图面临诸多挑战,其中包括雾、辉光和噪声因多个低强度有源彩色光源而具有复杂特性,以及模拟与真实数据的域差异导致的亮度问题。为解决这些,我们使用FSDA模块,处理频率不一致特性。FSDA先对频谱信息聚合,再计算通道权重并应用,最后映射回空间域,以此优化频谱信息,使模型更好处理复杂干扰。本文将其与YOLOv11相结合,增强YO
- 基于多头注意机制的多尺度特征融合的GCN的序列数据(功率预测、故障诊断)模型及代码详解
清风AI
深度学习算法详解及代码复现人工智能神经网络深度学习pythoncondapippandas
GCN基础在深度学习领域中,图卷积网络(GCN)是一种强大的图数据处理工具。它将卷积操作扩展到图结构上,能够有效捕捉图中节点之间的关系信息。GCN的核心思想是通过聚合邻居节点的特征来更新目标节点的表示,这种局部聚合机制使得GCN能够学习到图的拓扑结构和节点属性。GCN的主要构成要素包括节点特征矩阵、邻接矩阵和卷积核。通过多次迭代,GCN可以逐步学习到图中节点的高阶表示,为后续的分类、预测等任务提供
- 智慧畜牧:智能化监控系统如何提升养殖效率与质量
inscode_041
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE智慧畜牧:智能化监控系统如何提升养殖效率与质量在当今数字化时代,畜牧业正经历着前所未有的变革。传统的人工监控方式已经难以满足现代养殖场对高效管理和精准控制的需求。为了应对这一挑战,越来越多的养殖场开始引入智能化监控系统,以提高生产效率、优化资源利用并确保动物健康。而在这个过程中,一款名为InsCodeAIIDE的智能开发工
- 智慧畜牧:用AI技术革新养殖监控与管理
inscode_057
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE智慧畜牧:用AI技术革新养殖监控与管理随着科技的不断进步,农业领域的智能化转型已经成为必然趋势。特别是在畜牧业中,借助先进的监控和管理系统,不仅可以提高生产效率,还能确保动物健康和食品安全。本文将探讨如何通过智能化工具,如InsCodeAIIDE,为畜牧监控带来全新的变革。一、传统畜牧监控的挑战传统的畜牧监控主要依赖人工巡
- AI大模型交付业务起势,亚信科技书写AI时代的转型样本
大数据在线
AI云静思园人工智能AI大模型亚信科技数智运营AI大模型交付
面对AI带来的产业巨变,任何企业都无法永远躺在过去的功勋簿上,积极拥抱变化和布局转型成为必然选择。这就像一场马拉松,征途艰难,唯一确定的是:那些敢于在断裂处重生的企业,终将在时代的潮汐中刻下自己的印记。近日,亚信科技公布2024年财报数据--营业收入66.46亿元人民币,同比下降15.8%;净利润却达到5.16亿元人民币,净利润率同比增长1.3个百分点至7.8%,研发投入占收入比13.6%,研发与
- 【第9章】“基础工作流”怎么用?(图生图/局部重绘/VAE/更多基础工作流)ComfyUI基础入门教程
聚梦小课堂
ComfyUI基础入门课comfyui基础教程工作流教程AI绘画教程AI作画人工智能stablediffusion
引言学到这里,大家是不是会比较纠结,好像还在持续学习新的东西,未来还有多少基础的东西要学习,才能正常使用ComfyUI呢?这其实需要转变一个心态。AI绘画还处于一个快速迭代的过程,隔三岔五的就会有很多新技术、新模型出现,ComfyUI目前同样处于一个快速更新的阶段,从更新记录上也可以看到,几乎每一两天都会更新新版本。同样,生态的各种自定义节点也在持续更新。所以,不可能有个教程把所有未来会用到的知识
- YOLO魔改之频率分割模块(FDM)
清风AI
YOLO算法魔改系列YOLO人工智能计算机视觉目标检测python深度学习
目标检测原理目标检测是一种将目标分割和识别相结合的图像处理技术,旨在从图像中定位并识别特定目标。深度学习方法,如FasterR-CNN和YOLO系列,已成为主流解决方案。这些方法通常采用两阶段或单阶段策略,通过卷积神经网络(CNN)提取特征并进行分类和定位。在小目标检测中,为克服分辨率低和特征不明显的问题,模型设计中会特别注重特征融合和多尺度处理,以增强对小目标的感知能力。YOLOv8基础YOLO
- PyTorch模型训练实战指南:掌握动态图特性与工业级部署技巧
lmtealily
pytorch人工智能python
前言在深度学习领域,PyTorch凭借其动态计算图、高效的自动微分系统及高度Pythonic的设计哲学,已成为学术界与工业界的主流框架。其即时执行模式大幅简化了模型调试流程,而灵活的模块化设计则为复杂模型的构建提供了坚实基础。然而,从实验原型到工业级部署的全链路实践中,开发者仍需系统性掌握框架核心特性与工程化技巧。本文以实战为导向,深入剖析PyTorch动态图机制与自动微分原理,详解从数据预处理、
- ESG证书:AI预测未来十年职场人的黄金入场券
ESG学习圈
pandaspythondjango
当ChatGPT开始撰写ESG报告,当机器学习模型精准预测企业碳排放轨迹,一场由AI驱动的ESG革命正在颠覆传统可持续发展领域。根据彭博新能源财经预测,到2030年全球ESG资产管理规模将突破50万亿美元,而AI技术将成为撬动这个万亿级市场的核心杠杆。一、AI透视下的ESG黄金时代在微软开发的AI模型ESG-NOW系统中,通过分析全球4300家上市公司近十年的环境数据,成功预测2025年新能源行业
- 【新能源集成热管理系统的开发与优化】
新能源汽车--三电老K
研发测试汽车学习方法
新能源集成热管理系统的开发与优化涉及多阶段的试验、标定和策略调整,需结合实验室仿真、环境仓测试及实车道路验证,以应对高低温、极端气候等复杂工况。以下是具体实施方法:一、环境仓试验室测试系统标定与基础验证模型搭建:通过AMESim等仿真工具建立机-电-热耦合模型,涵盖电池、电机、空调等子系统,分析高温工况下各部件能耗占比及整车续航表现。参数标定:在环境仓中模拟极端温度(如38℃高温或-30℃低温),
- 【数学建模】模糊综合评价模型详解、模糊集合论简介
烟锁池塘柳0
数学建模数学建模
模糊综合评价模型详解文章目录模糊综合评价模型详解1.模糊综合评价模型概述2.模糊综合评价的基本原理2.1基本概念2.2评价步骤3.模糊综合评价的数学模型3.1数学表达3.2模糊合成运算4.模糊综合评价的应用领域5.模糊综合评价的优缺点5.1优点5.2缺点6.模糊综合评价的实现步骤7.模糊综合评价在实际项目中的应用案例8.结论参考资料1.模糊综合评价模型概述模糊综合评价法(FuzzyComprehe
- windows下源码安装golang
616050468
golang安装golang环境windows
系统: 64位win7, 开发环境:sublime text 2, go版本: 1.4.1
1. 安装前准备(gcc, gdb, git)
golang在64位系
- redis批量删除带空格的key
bylijinnan
redis
redis批量删除的通常做法:
redis-cli keys "blacklist*" | xargs redis-cli del
上面的命令在key的前后没有空格时是可以的,但有空格就不行了:
$redis-cli keys "blacklist*"
1) "blacklist:12:
[email protected]
- oracle正则表达式的用法
0624chenhong
oracle正则表达式
方括号表达示
方括号表达式
描述
[[:alnum:]]
字母和数字混合的字符
[[:alpha:]]
字母字符
[[:cntrl:]]
控制字符
[[:digit:]]
数字字符
[[:graph:]]
图像字符
[[:lower:]]
小写字母字符
[[:print:]]
打印字符
[[:punct:]]
标点符号字符
[[:space:]]
- 2048源码(核心算法有,缺少几个anctionbar,以后补上)
不懂事的小屁孩
2048
2048游戏基本上有四部分组成,
1:主activity,包含游戏块的16个方格,上面统计分数的模块
2:底下的gridview,监听上下左右的滑动,进行事件处理,
3:每一个卡片,里面的内容很简单,只有一个text,记录显示的数字
4:Actionbar,是游戏用重新开始,设置等功能(这个在底下可以下载的代码里面还没有实现)
写代码的流程
1:设计游戏的布局,基本是两块,上面是分
- jquery内部链式调用机理
换个号韩国红果果
JavaScriptjquery
只需要在调用该对象合适(比如下列的setStyles)的方法后让该方法返回该对象(通过this 因为一旦一个函数称为一个对象方法的话那么在这个方法内部this(结合下面的setStyles)指向这个对象)
function create(type){
var element=document.createElement(type);
//this=element;
- 你订酒店时的每一次点击 背后都是NoSQL和云计算
蓝儿唯美
NoSQL
全球最大的在线旅游公司Expedia旗下的酒店预订公司,它运营着89个网站,跨越68个国家,三年前开始实验公有云,以求让客户在预订网站上查询假期酒店时得到更快的信息获取体验。
云端本身是用于驱动网站的部分小功能的,如搜索框的自动推荐功能,还能保证处理Hotels.com服务的季节性需求高峰整体储能。
Hotels.com的首席技术官Thierry Bedos上个月在伦敦参加“2015 Clou
- java笔记1
a-john
java
1,面向对象程序设计(Object-oriented Propramming,OOP):java就是一种面向对象程序设计。
2,对象:我们将问题空间中的元素及其在解空间中的表示称为“对象”。简单来说,对象是某个类型的实例。比如狗是一个类型,哈士奇可以是狗的一个实例,也就是对象。
3,面向对象程序设计方式的特性:
3.1 万物皆为对象。
- C语言 sizeof和strlen之间的那些事 C/C++软件开发求职面试题 必备考点(一)
aijuans
C/C++求职面试必备考点
找工作在即,以后决定每天至少写一个知识点,主要是记录,逼迫自己动手、总结加深印象。当然如果能有一言半语让他人收益,后学幸运之至也。如有错误,还希望大家帮忙指出来。感激不尽。
后学保证每个写出来的结果都是自己在电脑上亲自跑过的,咱人笨,以前学的也半吊子。很多时候只能靠运行出来的结果再反过来
- 程序员写代码时就不要管需求了吗?
asia007
程序员不能一味跟需求走
编程也有2年了,刚开始不懂的什么都跟需求走,需求是怎样就用代码实现就行,也不管这个需求是否合理,是否为较好的用户体验。当然刚开始编程都会这样,但是如果有了2年以上的工作经验的程序员只知道一味写代码,而不在写的过程中思考一下这个需求是否合理,那么,我想这个程序员就只能一辈写敲敲代码了。
我的技术不是很好,但是就不代
- Activity的四种启动模式
百合不是茶
android栈模式启动Activity的标准模式启动栈顶模式启动单例模式启动
android界面的操作就是很多个activity之间的切换,启动模式决定启动的activity的生命周期 ;
启动模式xml中配置
<activity android:name=".MainActivity" android:launchMode="standard&quo
- Spring中@Autowired标签与@Resource标签的区别
bijian1013
javaspring@Resource@Autowired@Qualifier
Spring不但支持自己定义的@Autowired注解,还支持由JSR-250规范定义的几个注解,如:@Resource、 @PostConstruct及@PreDestroy。
1. @Autowired @Autowired是Spring 提供的,需导入 Package:org.springframewo
- Changes Between SOAP 1.1 and SOAP 1.2
sunjing
ChangesEnableSOAP 1.1SOAP 1.2
JAX-WS
SOAP Version 1.2 Part 0: Primer (Second Edition)
SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)
SOAP Version 1.2 Part 2: Adjuncts (Second Edition)
Which style of WSDL
- 【Hadoop二】Hadoop常用命令
bit1129
hadoop
以Hadoop运行Hadoop自带的wordcount为例,
hadoop脚本位于/home/hadoop/hadoop-2.5.2/bin/hadoop,需要说明的是,这些命令的使用必须在Hadoop已经运行的情况下才能执行
Hadoop HDFS相关命令
hadoop fs -ls
列出HDFS文件系统的第一级文件和第一级
- java异常处理(初级)
白糖_
javaDAOspring虚拟机Ajax
从学习到现在从事java开发一年多了,个人觉得对java只了解皮毛,很多东西都是用到再去慢慢学习,编程真的是一项艺术,要完成一段好的代码,需要懂得很多。
最近项目经理让我负责一个组件开发,框架都由自己搭建,最让我头疼的是异常处理,我看了一些网上的源码,发现他们对异常的处理不是很重视,研究了很久都没有找到很好的解决方案。后来有幸看到一个200W美元的项目部分源码,通过他们对异常处理的解决方案,我终
- 记录整理-工作问题
braveCS
工作
1)那位同学还是CSV文件默认Excel打开看不到全部结果。以为是没写进去。同学甲说文件应该不分大小。后来log一下原来是有写进去。只是Excel有行数限制。那位同学进步好快啊。
2)今天同学说写文件的时候提示jvm的内存溢出。我马上反应说那就改一下jvm的内存大小。同学说改用分批处理了。果然想问题还是有局限性。改jvm内存大小只能暂时地解决问题,以后要是写更大的文件还是得改内存。想问题要长远啊
- org.apache.tools.zip实现文件的压缩和解压,支持中文
bylijinnan
apache
刚开始用java.util.Zip,发现不支持中文(网上有修改的方法,但比较麻烦)
后改用org.apache.tools.zip
org.apache.tools.zip的使用网上有更简单的例子
下面的程序根据实际需求,实现了压缩指定目录下指定文件的方法
import java.io.BufferedReader;
import java.io.BufferedWrit
- 读书笔记-4
chengxuyuancsdn
读书笔记
1、JSTL 核心标签库标签
2、避免SQL注入
3、字符串逆转方法
4、字符串比较compareTo
5、字符串替换replace
6、分拆字符串
1、JSTL 核心标签库标签共有13个,
学习资料:http://www.cnblogs.com/lihuiyy/archive/2012/02/24/2366806.html
功能上分为4类:
(1)表达式控制标签:out
- [物理与电子]半导体教材的一个小问题
comsci
问题
各种模拟电子和数字电子教材中都有这个词汇-空穴
书中对这个词汇的解释是; 当电子脱离共价键的束缚成为自由电子之后,共价键中就留下一个空位,这个空位叫做空穴
我现在回过头翻大学时候的教材,觉得这个
- Flashback Database --闪回数据库
daizj
oracle闪回数据库
Flashback 技术是以Undo segment中的内容为基础的, 因此受限于UNDO_RETENTON参数。要使用flashback 的特性,必须启用自动撤销管理表空间。
在Oracle 10g中, Flash back家族分为以下成员: Flashback Database, Flashback Drop,Flashback Query(分Flashback Query,Flashbac
- 简单排序:插入排序
dieslrae
插入排序
public void insertSort(int[] array){
int temp;
for(int i=1;i<array.length;i++){
temp = array[i];
for(int k=i-1;k>=0;k--)
- C语言学习六指针小示例、一维数组名含义,定义一个函数输出数组的内容
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int * p; //等价于 int *p 也等价于 int* p;
int i = 5;
char ch = 'A';
//p = 5; //error
//p = &ch; //error
//p = ch; //error
p = &i; //
- centos下php redis扩展的安装配置3种方法
dcj3sjt126com
redis
方法一
1.下载php redis扩展包 代码如下 复制代码
#wget http://redis.googlecode.com/files/redis-2.4.4.tar.gz
2 tar -zxvf 解压压缩包,cd /扩展包 (进入扩展包然后 运行phpize 一下是我环境中phpize的目录,/usr/local/php/bin/phpize (一定要
- 线程池(Executors)
shuizhaosi888
线程池
在java类库中,任务执行的主要抽象不是Thread,而是Executor,将任务的提交过程和执行过程解耦
public interface Executor {
void execute(Runnable command);
}
public class RunMain implements Executor{
@Override
pub
- openstack 快速安装笔记
haoningabc
openstack
前提是要配置好yum源
版本icehouse,操作系统redhat6.5
最简化安装,不要cinder和swift
三个节点
172 control节点keystone glance horizon
173 compute节点nova
173 network节点neutron
control
/etc/sysctl.conf
net.ipv4.ip_forward =
- 从c面向对象的实现理解c++的对象(二)
jimmee
C++面向对象虚函数
1. 类就可以看作一个struct,类的方法,可以理解为通过函数指针的方式实现的,类对象分配内存时,只分配成员变量的,函数指针并不需要分配额外的内存保存地址。
2. c++中类的构造函数,就是进行内存分配(malloc),调用构造函数
3. c++中类的析构函数,就时回收内存(free)
4. c++是基于栈和全局数据分配内存的,如果是一个方法内创建的对象,就直接在栈上分配内存了。
专门在
- 如何让那个一个div可以拖动
lingfeng520240
html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml
- 第10章 高级事件(中)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 计算两个经纬度之间的距离
roadrunners
计算纬度LBS经度距离
要解决这个问题的时候,到网上查了很多方案,最后计算出来的都与百度计算出来的有出入。下面这个公式计算出来的距离和百度计算出来的距离是一致的。
/**
*
* @param longitudeA
* 经度A点
* @param latitudeA
* 纬度A点
* @param longitudeB
*
- 最具争议的10个Java话题
tomcat_oracle
java
1、Java8已经到来。什么!? Java8 支持lambda。哇哦,RIP Scala! 随着Java8 的发布,出现很多关于新发布的Java8是否有潜力干掉Scala的争论,最终的结论是远远没有那么简单。Java8可能已经在Scala的lambda的包围中突围,但Java并非是函数式编程王位的真正觊觎者。
2、Java 9 即将到来
Oracle早在8月份就发布
- zoj 3826 Hierarchical Notation(模拟)
阿尔萨斯
rar
题目链接:zoj 3826 Hierarchical Notation
题目大意:给定一些结构体,结构体有value值和key值,Q次询问,输出每个key值对应的value值。
解题思路:思路很简单,写个类词法的递归函数,每次将key值映射成一个hash值,用map映射每个key的value起始终止位置,预处理完了查询就很简单了。 这题是最后10分钟出的,因为没有考虑value为{}的情