题目大意:一个兔子王国,有N只兔子,每只兔子有一个重量,如果两只兔子的重量不互质,那么就会干架,现在国王想将l r之间的兔子关进监狱,它想知道会有多少只兔子不会和别的兔子干架。
解题思路:预处理出每只兔子的L,R表示向左和向右最近会与该兔子发生冲突的兔子,预处理的时候只要将每只兔子的重量分解成质因子后遍历两遍。
对于询问,将询问按照右区间排序,碰到i,则L位置+1,碰到R,则i位置+1,L位置-1。(如果L ≤ l && r ≤ R,那么兔子在这个l,r询问中是不会与其他兔子冲突)
这样l~r区间统计的即为会打架的兔子。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn = 200005;
int np, pri[maxn], vis[maxn];
void prime_table(int n) {
np = 0;
for (int i = 2; i <= n; i++) {
if (vis[i]) continue;
pri[np++] = i;
for (int j = i * 2; j <= n; j += i)
vis[j] = 1;
}
vis[1] = 1;
}
#define lowbit(x) ((x)&(-x))
struct Seg {
int l, r, id;
Seg (int l = 0, int r = 0, int id = 0) {
this->l = l;
this->r = r;
this->id = id;
}
friend bool operator < (const Seg& a, const Seg& b) {
return a.r < b.r;
}
};
int N, M, L[maxn], P[maxn];
int fenw[maxn], ans[maxn];
vector<int> g[maxn];
vector<Seg> vec, que;
inline void add (int x, int d) {
if (x <= 0)
return;
while (x <= N) {
fenw[x] += d;
x += lowbit(x);
}
}
inline int sum (int x) {
int ret = 0;
while (x) {
ret += fenw[x];
x -= lowbit(x);
}
return ret;
}
void init () {
vec.clear();
que.clear();
int x;
for (int i = 1; i <= N; i++) {
scanf("%d", &x);
g[i].clear();
for (int j = 0; j < np; j++) {
if (x % pri[j] == 0) {
g[i].push_back(pri[j]);
while (x % pri[j] == 0)
x /= pri[j];
}
if (vis[x] == 0) {
g[i].push_back(x);
break;
}
}
}
for (int i = 0; i < maxn; i++) P[i] = 0;
for (int i = 1; i <= N; i++) {
int tmp = 0;
for (int j = 0; j < g[i].size(); j++) {
tmp = max(tmp, P[g[i][j]]);
P[g[i][j]] = i;
}
L[i] = tmp;
vec.push_back(Seg(tmp, i, 0));
}
for (int i = 0; i < maxn; i++) P[i] = N + 1;
for (int i = N; i; i--) {
int tmp = N + 1;
for (int j = 0; j < g[i].size(); j++) {
tmp = min(tmp, P[g[i][j]]);
P[g[i][j]] = i;
}
vec.push_back(Seg(i, tmp, 1));
}
int l, r;
for (int i = 1; i <= M; i++) {
scanf("%d%d", &l, &r);
que.push_back(Seg(l, r, i));
}
}
void solve () {
sort(que.begin(), que.end());
sort(vec.begin(), vec.end());
memset(fenw, 0, sizeof(fenw));
int mv = 0;
for (int i = 0; i < que.size(); i++) {
while (mv < vec.size() && vec[mv].r <= que[i].r) {
add(vec[mv].l, 1);
if (vec[mv].id)
add(L[vec[mv].l], -1);
mv++;
}
int tmp = sum(que[i].r) - sum(que[i].l - 1);
ans[que[i].id] = que[i].r - que[i].l + 1 - tmp;
}
}
int main () {
prime_table(maxn);
while (scanf("%d%d", &N, &M) == 2 && N + M) {
init();
solve();
for (int i = 1; i <= M; i++)
printf("%d\n", ans[i]);
}
return 0;
}