- 【算法】贪心算法
希冀123
算法算法贪心算法
贪心算法1.贪心介绍2.贪心本质3.最优装载问题(1)问题分析(2)算法实现(3)算法分析1.贪心介绍贪心算法总是做出当前最好的选择,期望通过局部最优选择得到全局最优的解决方案。但贪心不是从整体最优来考虑的,一旦做出选择,不会再改变,只能达到某种意义上的局部最优。简记为:想要当下最好的,但会导致目光短浅2.贪心本质应用情景:当出现两个特性——贪心选择性质和最优子结构性质时可用。(1)贪心选择性质:
- 射频学习之HFSS入门(一)
OKay_J
学习经验分享笔记
HFSS下载与介绍下载介绍基本概念特点工作流程优势下载我下载的版本是ANSYSElectromagneticsSuite2023R1通过这篇文章下载,教程非常详细介绍基本概念HFSS(High-FrequencyStructureSimulator)是由ANSYS开发的一个专业的电磁场仿真软件,广泛用于高频电子工程中的电磁场分析。它主要用于设计和优化电磁设备,如天线、微波元件、射频(RF)设备等,
- 洛谷P1004(方格取数[NOIP 2000 提高组])题解
1≈∞
算法题解
题目大意:在一个N×N的方格中,从左上角到右下角走两次,每次只能向下或向右走,取过的数会变成0,求两次路径取数的最大总和。首先,我们需要理解问题。两次路径都要走,并且第一次走过的格子第二次就不能再取了。所以需要找到两条路径,使得它们经过的格子的数值之和最大,并且路径不能重复取数。或者,或者说,即使路径交叉也没关系,但同一个格子只能被取一次。比如,如果两条路径都经过同一个格子,那么这个格子的数只能被
- MySQL 数据库作发布系统的存储,一天五万条以上的增量, 预 计运维三年,怎么优化?思维导图 代码示例(java 架构)
用心去追梦
数据库mysql运维
对于一个每天有五万条以上增量、预计运维三年的MySQL发布系统,优化和规划是非常重要的。这不仅涉及到数据库本身的性能优化,还包括架构设计、硬件选择、监控与维护等多个方面。以下是一些建议和策略:优化策略数据库架构设计分库分表(Sharding):将数据分散到多个数据库或表中,减轻单个实例的压力。读写分离:使用主从复制,将读操作分流到从服务器上,减少主服务器负载。缓存机制:利用Redis或Memcac
- 梯度累加(结合DDP)梯度检查点
糖葫芦君
LLM算法人工智能大模型深度学习
梯度累加目的梯度累积是一种训练神经网络的技术,主要用于在内存有限的情况下处理较大的批量大小(batchsize)。通常,较大的批量可以提高训练的稳定性和效率,但受限于GPU或TPU的内存,无法一次性加载大批量数据。梯度累积通过多次前向传播和反向传播累积梯度,然后一次性更新模型参数,从而模拟大批量训练的效果。总结:显存限制:GPU/TPU显存有限,无法一次性加载大批量数据。训练稳定性:大批量训练通常
- 1985-2023 年 各省、地级市数字经济专利数据
经管数据集
数据分析
数据来源:CNRDS数据库包括Excel数据文件+字段说明书+数据库说明书具体字段:Province[省份]-省份Pftn[地市]-地市Year[会计年度]-会计年度Noderiafty[当年申请的数字经济相关发明数量]-当年申请的数字经济相关发明数量,单位:个Noderiaity[当年授权的数字经济相关发明数量]-当年授权的数字经济相关发明数量,单位:个Noderumap[当年申请的数字经济相关
- 面试题-Vue2和Vue3的区别
奶糖 肥晨
vue3vuevue.jsjavascript前端
文章目录1.响应式系统2.组合式API(CompositionAPI)3.Fragment(碎片)4.Teleport(传送门)5.性能改进6.移除或改变的功能7.构建工具8.TypeScript支持Vue2和Vue3之间存在许多重要的区别,这些区别涵盖了性能、API设计、组合式API(CompositionAPI)、响应式系统以及构建工具等方面。以下是一些关键的区别,并附带代码示例来加以说明。1
- 支持向量机(Support Vector Machine,SVM)
不易撞的网名
支持向量机算法机器学习
支持向量机(SupportVectorMachine,简称SVM)是一种监督学习模型,主要用于分类和回归分析。SVM的基本思想是寻找一个决策边界或超平面,使得两类样本之间的间隔最大化。这个间隔被定义为支持向量到超平面的最短距离,而支持向量就是那些恰好位于间隔边缘上的训练样本点。线性可分情况下的SVM假设我们有一组训练数据(x1,y1),(x2,y2),…,(xn,yn)(x_1,y_1),(x_2
- 核货宝:支持二次开发的移动订货系统分享
核货宝订货系统
移动订货系统开源订货系统批发订货商城移动订货系统
在快节奏的商业环境中,企业对高效、便捷的订货管理系统需求日益迫切。核货宝移动订货系统凭借其强大的功能和灵活的二次开发特性,成为众多企业优化订货流程、提升业务效率的得力助手。一、进销存管理(一)功能内容库存管理:对库存进行全方位实时监控,涵盖库存数量、库存成本以及库存位置等信息。系统支持库存盘点功能,定期或不定期对库存进行盘点,确保账实相符。当库存发生变动时,如商品入库、出库,系统自动更新库存数据。
- 时序差分(TD)算法:
waski
强化学习人工智能机器学习
TD算法:小猴子每走1步,看一下这个路口的V值,还有获得的奖励r;回到原来的路口,把刚刚看到的V值和奖励r进行运算,估算出V值。和蒙地卡罗(MC)不同:TD算法只需要走N步。就可以开始回溯更新。和蒙地卡罗(MC)一样:小猴需要先走N步,每经过一个状态,把奖励记录下来。然后开始回溯。那么,状态的V值怎么算呢?其实和蒙地卡罗一样,我们就假设N步之后,就到达了最终状态了。假设“最终状态”上我们之前没有走
- 在PyAudio模块中安装时出错
潮易
python
在PyAudio模块中安装时出错首先,你需要确保你的电脑上已经安装了Python和pip。然后,你可以使用以下命令来安装PyAudio模块:```bashpipinstallPyAudio```如果上述命令无法安装,你可能需要安装一些额外的库。在Ubuntu系统中,你需要先安装一些依赖库,然后再尝试安装PyAudio。你可以使用以下命令来安装这些依赖库:```bashsudoapt-getinst
- DeepSeek强化学习(Reinforcement Learning)基础与实践
Evaporator Core
强化学习#DeepSeek快速入门人工智能python数据库tornado强化学习deepseek
引言强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,专注于训练智能体(Agent)在环境中通过试错来学习最优策略。与监督学习和无监督学习不同,强化学习通过奖励信号来指导智能体的行为,使其能够在复杂的环境中做出决策。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练强化学习模型。本文将详细介绍如何使用DeepSeek进行强化学习的基础与实践,并通
- GCC 和 G++的基本使用
cuber膜拜
汇编gnuc++
GCC和G++命令GCC和G++命令GCC(GNUC编译器)基本用法常用选项示例G++(GNUC++编译器)基本用法常用选项示例GCC与G++的区别选择使用GCC还是G++C++编译流程1.预处理(Preprocessing)2.编译(Compilation)3.汇编(Assembly)4.链接(Linking)综合示例头文件搜索路径1.引号包含的头文件(`"add.h"`)搜索路径示例2.尖括号
- 架构演进史
三花学编程
架构架构java微服务
软件架构是软件工程的基石,它不仅影响着系统的性能、可维护性和可扩展性,也直接关系到开发团队的效率和项目的成功。随着技术的不断发展和业务需求的变化,软件架构经历了多个阶段的演进。本文将详细探讨这些阶段及其背后的驱动因素。1.单体架构时代1.1定义与特点单体架构是指将所有功能模块打包在一个独立的应用程序中。早期的计算机应用程序大多采用这种架构,所有的代码、数据和资源都集中在一个地方。1.2优点简单性:
- python-leetcode 43.二叉搜索树中第K小的元素
SylviaW08
leetcode算法职场和发展
题目:给定一个二叉搜索树的根节点root,和一个整数k,请设计算法,查找其中第K小的元素(从1开始计数)方法一:中序遍历叉搜索树具有如下性质:结点的左子树只包含小于当前结点的数。结点的右子树只包含大于当前结点的数。所有左子树和右子树自身必须也是二叉搜索树二叉树的中序遍历即按照访问左子树——根结点——右子树的方式遍历二叉树;在访问其左子树和右子树时,我们也按照同样的方式遍历;直到遍历完整棵树。因为二
- python-leetcode 22.相交链表
SylviaW08
leetcode-pythonleetcode算法职场和发展
题目:给两个单链表的头节点heada和headb,请找出并返回两个单链表相交的起始节点。如果两个链表不存在相较节点,返回null。两个链表在C1开始相交。intersectval:相交的起始节点的值,如果不存在相交节点,这一值为0listA:第一个链表listB:第二个链表skipA:在listA从头节点开始,跳到交叉节点的节点数skipB:在listB从头节点开始跳到交叉节点的节点数方法一:哈希
- 跟着小K开始零基础Python量化分析之旅 1: 初入量化江湖 —— Python与量化的第一次邂逅
山海青风
python量化分析
第一章:初入量化江湖——Python与量化的第一次邂逅故事情境在一个热闹的理财交流群里,小K偶然听到有人提起“量化投资”。那一刻,他心中燃起了一种莫名的好奇与憧憬:“量化投资究竟是什么?我真的能用代码来炒股吗?”然而,面对这一连串新奇的名词,小K感到有些茫然,一头雾水。就在他犹豫不决的时候,一位神秘的前辈私信他:“想要在量化江湖中闯出一片天地,首先得打好基础。先从搞定Python和学习如何读取股票
- 从零开始玩转TensorFlow:小明的机器学习故事 3
山海青风
#机器学习机器学习tensorflow人工智能
下面是一篇以小明为主角,尝试用TensorFlow预测校园活动参与率的学习故事。我们会在故事情境中穿插对线性回归和逻辑回归的原理介绍,并附带必要的代码示例,帮助你从零基础理解并动手实践。文章结尾还有简要的分析总结。小明的第一次机器学习实验场景:预测校园活动的参与率小明最近加入了学生会,负责策划校园活动。每次活动都需要准备场地、宣传物料和餐饮,但经常会出现场地过小或准备物资不足等问题。为了让活动准备
- OpenAI 助力数据分析中的模式识别与趋势预测
山海青风
#OpenAI数据分析信息可视化数据挖掘
数据分析师的日常工作中,发现数据中的隐藏模式和预测未来趋势是非常重要的一环。借助OpenAI的强大语言模型(如GPT-4),我们可以轻松完成这些任务,无需深厚的编程基础,也能快速上手。在本文中,我们将通过一个简单的例子,展示如何利用OpenAI模型帮助数据分析师识别模式和预测趋势,尤其是在时间序列预测(如销售、流量等)中的实际应用,并加入数据可视化来更直观地展示分析结果。一、模式识别与趋势预测的重
- vite 开启 gzip压缩
二川bro
前端前端
使用vite如何开启gzip压缩文章目录使用vite如何开启gzip压缩1.引言为什么需要Gzip压缩?Gzip压缩的作用2.Vite项目中的Gzip压缩Vite的基本概念Gzip压缩的原理3.使用Vite插件开启Gzip压缩安装`vite-plugin-compression`配置`vite-plugin-compression`4.实战:在Vite项目中开启Gzip压缩项目初始化安装和配置`v
- 研二自学C++想转码,如何规划才能成功?有什么好的开源项目推荐?
程序员yt
c++开源java
今天给大家分享的是一位粉丝的提问,研二自学C++想转码,如何规划才能成功?有什么好的开源项目推荐?接下来把粉丝的具体提问和我的回复分享给大家,希望也能给一些类似情况的小伙伴一些启发和帮助。同学提问:你好,我想咨询一下转码相关的问题。我的学历背景是安徽大学本科西安电子科技大学研二在读,目前已经完成了C++基本语法的学习,也完成了两个国外的公开课CS144和6.s081的学习与相关lab的编写。接下来
- 一文速通MySQL
C__C..
mysql数据库
MySQL是一种广泛使用的开源关系型数据库管理系统,它通过SQL(结构化查询语言)来管理和操作数据库。SQL语句主要分为三类:DDL(数据定义语言)、DML(数据操纵语言)和DCL(数据控制语言)。DDL(数据定义语言):功能:用于定义和修改数据库的结构常见语句:查看数据库showdatabases;新建数据库createdatabase数据库名;删除数据库dropdatabase数据库名;查看当
- 2024年Agent AI:Agent AI的基本概念、关键技术、应用前景、未来展望
大模型部署
人工智能langchain程序员知识图谱LLMAI大模型编程
在2024年,人工智能领域迎来了一个新的里程碑——AgentAI的兴起。AgentAI,即代理智能,是一种能够感知并在不同领域和应用中采取行动的系统。它不仅是人工智能研究的一个新方向,更是通向人工通用智能(AGI)的一条充满希望的途径。本文将详细介绍AgentAI的基本概念、关键技术和应用前景。一、AgentAI的基本概念AgentAI,或称代理智能,是指一类能够感知环境、理解情境并在此基础上执行
- PyNvVideoCodec解码使用
huomama
pythonPyNvVideoCodec视频编解码
解码视频生成器例子,支持解码视频和视频流try:importtimefromfunctoolsimportwrapsimportcv2importnumpyasnpimportpycuda.driverascudaimportPyNvVideoCodecasnvcimportctypesasCimportosexceptImportErrorase:passdefcast_address_to_1
- Python 学习之旅:高级阶段(十七)Web 开发之模板引擎(如 Jinja2)
喜-喜
Python学习python学习前端
在Python的Web开发进程中,模板引擎是一个关键的工具,它能帮助我们将动态数据和静态的HTML结构结合起来,生成最终呈现给用户的网页。Jinja2作为Python中广泛使用的模板引擎,以其简洁的语法和强大的功能,在众多Web框架中发挥着重要作用。接下来,让我们以Flask框架为依托,深入了解Jinja2模板引擎。一、模板引擎的作用 在Web开发中,我们常常需要根据不同的用户请求,动态生成
- 揭秘波士顿房价密码:从经典数据集到线性回归实战
珠峰日记
线性回归算法回归机器学习深度学习
引言波士顿房价预测是一个经典的机器学习任务,类似于程序员世界的“HelloWorld”。和大家对房价的普遍认知相同,波士顿地区的房价受诸多因素影响。该数据集统计了13种可能影响房价的因素和该类型房屋的均价,期望构建一个基于13个因素进行房价预测的模型。在机器学习领域,预测问题是一个核心研究方向,而房价预测作为其中的经典回归问题备受关注。波士顿房价数据集包含了与波士顿地区房屋相关的多种特征信息,通过
- 系统架构设计基础知识
胶水代码
系统架构设计师系统架构
一.系统架构概述系统架构的定义系统架构(SystemArchitecture)是系统的一种整体的高层次的结构表示,是系统的骨架和根基,支撑和链接各个部分,包括构件、连接件、约束规范以及指导这些内容设计与演化的原理,是刻画系统整体抽象结构的一种手段。软架构的定义软件体系结构为软件系统提供了结构、行为和属性的高级抽象,由构成系统的元素描述、元素的外部可见属性、这些元素的相互作用、指导元素集成的模式以及
- Python自动化办公实战:PDF文本提取技巧
乔代码嘚
Pythonpython脚本python自动化pdf
哈喽大家好,今天来给大家介绍Python-PDF文本提取技巧PDF文件具有跨平台的特点,可以在不同的操作系统和设备上保持一致的显示效果。但是,PDF文件也有一些缺点,比如不易编辑、复制和搜索。如果我们想要从PDF文件中提取文本内容,该怎么办呢?在本教程中,我们将介绍如何使用Python中的PyPDF2库来提取PDF文件中的内嵌文字内容。PyPDF2是一个纯Python的库,可以读取、分割、合并、裁
- 机器学习数学通关指南——牛顿-莱布尼茨公式
Shockang
机器学习数学通关指南机器学习数学微积分
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文一句话总结∫abf(x) dx=F(b)−F(a)\int_{a}^{b}f(x)\,dx=F(b)-F(a)∫abf(x)dx=F(b)−F(a)其中,F(x)F(x)F(x)是f(x)f(x)f(x)的一个原函数(即F′(
- 第三讲-神经网络八股
loveysuxin
Tensorflowtensorflow
一、搭建神经网络六部法tf.keras搭建神经网络六部法1、import相关模块 2、train,test #训练集、测试集3、model=tf.keras.models.Sequential #逐层搭建网络结构4、model.compile #配置训练方法,选择训练使用的优化器、损失函数和最终评价指标5、model.fit #执行训练过程,告知训练集和测试集的输入值和标签、每个batc
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro