- MySQL 数据操纵与数据库优化
熬夜的猪
数据库sqlmysql
MySQL数据库的DML一、创建(Create)1.基本语法INSERTINTO表名[(列名1,列名2,...)]VALUES(值1,值2,...);省略列名条件:当值的顺序与表结构完全一致时,可省略列名(需包含所有字段值)批量插入:单条语句插入多行数据提升效率INSERTINTOstudent(id,name,score)VALUES(1,'张三',99),(2,'李四',88),(3,'王五'
- C++从入门到精通专栏简介
xiaoheshang_123
C++从入门到精通专栏开发语言c++
目录C++从入门到精通专栏简介专栏概述专栏特色适用人群学习目标专栏结构第1章:C++语言基础第2章:面向过程编程第3章:面向对象编程(OOP)入门第4章:标准模板库(STL)初探第5章:高级特性第6章:现代C++第7章:实践项目第8章:性能优化与调试第9章:职业发展专栏优势期待与收获C++从入门到精通专栏简介专栏概述本专栏旨在为C++编程语言的学习者提供一个全面而系统的指南,帮助他们从零基础逐步成
- D-FINE模型详解及代码复现
清风AI
目标跟踪人工智能计算机视觉深度学习机器学习python神经网络
研究背景在实时目标检测领域的快速发展背景下,D-FINE作为一项突破性的方法应运而生。它超越了现有模型如YOLOv10、YOLO11及RT-DETRv1/v2/v3,重新定义了边界框回归任务,显著提升了实时目标检测的性能上限。D-FINE通过创新的细粒度分布优化(FDR)和全局最优定位自蒸馏(GO-LSD)机制,为目标检测领域带来了新的突破,为未来的研究奠定了基础。创新优势D-FINE模型在创新方
- HTTP代理:网络世界的智能中转站
在互联网信息高速流动的时代,HTTP代理作为一种基础却强大的网络工具,正在各类网络活动中扮演着越来越重要的角色。它就像一位经验丰富的网络向导,不仅能够优化访问路径,还能在用户与目标网站之间建立起安全屏障,让网络体验更加流畅和安全。HTTP代理最基本的功能是作为网络请求的中转站。当用户通过代理访问网站时,请求首先发送到代理服务器,再由代理服务器向目标网站获取数据。这种间接访问的方式带来了多重优势:一
- JavaScript深入理解与实战:作业6详解
红廉骑士兽
本文还有配套的精品资源,点击获取简介:本次作业深入探讨了JavaScript编程语言的基础语法、函数与闭包、对象与原型链、事件与DOM操作、异步编程、ES6新特性、框架与库的使用、性能优化以及调试与测试。JavaScript在Web开发中扮演关键角色,通过学习上述知识点,学生将能够提升Web应用开发技能,优化代码性能,并进行有效的代码调试与测试。1.JavaScript基础语法介绍与实战1.1Ja
- HtmlEx:HTML高级开发与实战指南
浮华ya
本文还有配套的精品资源,点击获取简介:HTML是创建网页的基础,而"HtmlEx"项目旨在提升开发者的HTML技能。内容包括HTML5新特性,CSS和JavaScript的深入集成,表单元素的使用和验证,多媒体支持,Web组件,SEO优化,无障碍性实践,HTML模板语言使用,以及与后端框架的集成。通过实践讲解,让开发者在网页开发中更加得心应手。1.HTML基本结构与元素1.1HTML文档结构解析H
- Neo4j 图数据库安装教程(2024最新版)—— Windows / Linux / macOS 全平台指南
2501_91537435
图数据库neo4j数据库windows
Neo4j图数据库安装教程(2024最新版)——Windows/Linux/macOS全平台指南Neo4j是目前最流行的图数据库(GraphDatabase),广泛应用于社交网络、推荐系统、知识图谱等领域。本文将详细介绍Windows、Linux和macOS三大平台的Neo4j安装方法,并包含配置优化、基础使用示例和常见问题解决。一、Neo4j简介1.什么是Neo4j?Neo4j是一个高性能的No
- 信创适配实践:ARM64 架构 KylinOS 系统下 Docker 部署 Nginx 及跨架构数据迁移全攻略
H03004
架构dockernginx
目录一、信创背景与实践价值二、环境筹备:ARM64+KylinOS基础配置(一)系统预检:锁定架构与版本(二)Docker安装:适配KylinOS的踩坑指南1.依赖预处理(解决KylinOS源差异)2.配置ARM64专属镜像源3.安装与加速优化4.验证安装三、Nginx容器全流程:从镜像到运维(一)镜像选择:ARM64适配的核心逻辑(二)容器启动:参数解析与权限踩坑1.启动命令(含持久化挂载)2.
- MCP模型上下文协议:AI人工智能模型训练的自动化调参
AI天才研究院
AI人工智能与大数据人工智能自动化运维ai
MCP模型上下文协议:AI人工智能模型训练的自动化调参关键词:MCP模型、自动化调参、AI训练、超参数优化、上下文协议、机器学习、深度学习摘要:本文深入探讨MCP模型上下文协议在AI模型训练自动化调参中的应用。MCP(ModelContextProtocol)是一种创新的自动化调参框架,通过上下文感知和动态参数调整机制,显著提升模型训练效率和性能。文章将从理论基础、算法实现、数学原理到实际应用进行
- AI--提升效率、驱动创新的核心引擎
保持学习ing
AI编程自动化低代码
自动化代码生成、低代码/无代码开发、算法优化实践等新兴技术在软件开发领域正逐渐崭露头角。这些技术为开发者提供了更高效、更便捷的开发方式,大大提升了软件开发的效率和质量。本文重点探讨的是这些技术在实际应用中的价值和优势。1、自动化代码生成1.1优势自动化代码生成是利用机器学习和人工智能技术,通过分析需求和已有代码,生成可用的代码片段或完整的程序。这种技术可以极大地减少开发人员的工作量,提高开发效率。
- (全网最全,打光测试解决高反光产品)在机器视觉2D中,遇到高反光产品打光测试怎么办?
苏州大视通机器视觉
杂说科技人工智能计算机视觉opencv
关键原则:优先从物理层面消除反光(光源/光学),算法作为补充。偏振方案成本通常低于更换光源,且效果显著,建议优先尝试。在机器视觉打光测试中出现反光问题会严重影响图像质量,导致特征模糊、边缘丢失或检测失败。以下是系统性的解决方案,可根据实际情况组合应用:一、调整光源方案改变光源角度斜射照明:避免光源直射反光区域(如30°-60°环光、条形光侧打)。同轴光优化:对镜面物体改用低角度环形光(如<15°)
- Cortex-A9解码H265遇到的程序崩溃问题
melonbo
FFMPEGffmpeg
1、应用背景处理器采用Cortex-A9,从网络摄像机拉取RTSP视频流,编码格式为H265,在打开rtsp视频流时有小概率出现程序崩溃的问题。2、分析根据coredump文件显示,问题出现在hevcdsp_sao_neon.s文件,它的作用是优化HEVC视频编码器的性能,特别是在处理视频帧时,通过NEON指令集实现的并行处理能力,可以显著提高视频编码的速度。ARMNEON指令集是ARM平台上的S
- 一款wordperss AI免费插件自动内容生成+前端AI交互+文章批量采集
Linkreate
前端人工智能wordpresswordpressAI插件wordpress免费插件wordpress自动发文自动发文源码
一款LinkreatewordperssAI自动内容生成+前端AI会话窗口交互+文章批量采集免费插件1.SEO优化文章生成关键词驱动的内容生成:用户可以输入关键词或长尾关键词,插件会根据这些关键词生成高质量的SEO优化文章。文章结构清晰,语言自然流畅,符合SEO标准,能够有效提升网站内容的搜索引擎排名。自定义文章长度和要求:用户可以根据需要指定文章的长度(字数)以及对文章的额外要求,例如内容风格、
- Python 特殊方法深度解析:从对象创建到元类编程的全攻略
佑瞻
python工程化python开发语言
在Python开发中,我们经常会遇到需要自定义类行为的场景。无论是重载运算符、定制属性访问,还是优化内存使用,特殊方法都扮演着关键角色。这些被双下划线包裹的方法(如__init__、__getitem__)如同类的"隐藏接口",掌握它们能让我们更灵活地操控类的行为。今天,我们就来深入探讨这些特殊方法的奥秘,揭开Python面向对象编程的底层逻辑。一、特殊方法的核心概念与基本定制特殊方法的本质特殊方
- 提高APP安全性的必备加固手段——深度解析代码混淆技术
Nginx运维小李
ios
APP加固方式iOSAPP加固是优化APK安全性的一种方法,常见的加固方式有混淆代码、加壳、数据加密、动态加载等。下面介绍一下iOSAPP加固的具体实现方式。混淆代码:使用ProGuard工具可以对代码进行混淆,使得反编译出来的代码很难阅读和理解。使用方式:在build.gradle文件中配置proguard-rules.pro文件,然后在项目构建时执行混淆。加壳:使用加壳工具对APK文件进行加壳
- Oracle 进阶语法实战:从多维分析到数据清洗的深度应用(第四课)
AI、少年郎
oracle数据库
在《Oracle树形统计再进阶》(第三课)基础上,我们跳出传统SQL聚合框架,探索Oracle特有的高级语法特性,包括多维分析神器MODEL子句、数据清洗利器正则表达式、PL/SQL存储过程优化,以及基于执行计划的查询调优技巧。这些技术能解决传统方法难以处理的复杂场景,如动态列生成、不规则数据清洗、批量数据处理等。一、MODEL子句:多维数据建模与动态透视业务场景:动态生成各部门全年度各季度请假类
- Unity引擎开发:VR渲染技术_(19).VR项目实例开发
chenlz2007
虚拟现实游戏2unityvrlucene游戏引擎json全文检索
VR项目实例开发在本节中,我们将通过一个具体的虚拟现实项目实例,详细介绍如何在Unity引擎中实现VR渲染技术。我们将从项目的基本设置开始,逐步讲解如何创建VR场景、配置相机、添加交互元素、优化性能等方面的内容。通过本节的学习,您将能够掌握在Unity中开发VR项目的基本流程和技术要点。1.项目基本设置1.1创建新的VR项目首先,打开UnityHub并创建一个新的项目。选择“3D”模板,然后在项目
- 结构力学优化算法:多目标优化:遗传算法与结构优化_2024-08-08_19-41-25.Tex
chenjj4003
材料力学2算法javascript前端人工智能线性代数
结构力学优化算法:多目标优化:遗传算法与结构优化绪论结构优化的重要性在工程设计中,结构优化扮演着至关重要的角色。它旨在通过最小化成本、重量或应力等目标,同时确保结构的强度、刚度和稳定性满足设计要求,来提高结构的性能和效率。结构优化可以帮助工程师在设计初期就避免潜在的结构问题,减少材料浪费,降低生产成本,同时提升产品的竞争力。多目标优化的概念多目标优化是指在优化过程中同时考虑多个目标函数的优化问题。
- MyBatis-Spring 优化 Mapper 接口使用的实践与原理
coderzpw
MybatisSpring系列mybatisspringjava
MyBatis-Spring优化Mapper接口使用的实践与原理一、纯MyBatis项目Mapper接口使用的核心痛点1.1配置与调用流程繁琐1.2代码规范难以统一1.3依赖管理不清晰二、MyBatis-Spring实现Mapper接口自动化注册的原理与优势2.1MapperScannerConfigurer2.2ClassPathMapperScanner2.3MapperFactoryBean
- Java 接口性能优化二
hqxstudying
数据库oraclesql
三、数据库层面:优化数据交互的「最后一公里」数据库是接口性能的「重灾区」——超过60%的接口响应慢问题可追溯至低效的数据交互。优化需从「SQL执行效率」「索引设计」「连接管理」三个维度突破。SQL优化:让查询「少走弯路」核心原则:减少无效数据扫描,让数据库「只做必要的工作」。常见问题与优化:**避免SELECT***:问题:返回冗余字段,增加数据传输量,无法利用覆盖索引。优化:明确指定需要的字段,
- HIGRESS插件开发实战:构建自定义网关功能
CarlowZJ
Higress
摘要本文深入探讨HIGRESS插件开发,包括插件架构、开发流程、实战案例等内容。通过详细的代码示例和最佳实践,帮助开发者掌握插件开发技能,实现自定义网关功能。目录插件开发概述开发环境搭建插件架构设计开发流程详解实战案例调试与测试性能优化最佳实践总结与展望1.插件开发概述1.1插件架构插件系统插件加载器插件管理器插件执行器插件生命周期动态加载配置加载插件注册插件发现请求处理响应处理初始化启动停止1.
- 每天一个前端小知识 Day 16 - 前端性能优化全流程指南
蓝婷儿
前端面试前端性能优化
前端性能优化全流程指南(从加载到交互)目标概览:前端性能优化四大核心维度阶段优化目标加载阶段首屏速度、资源压缩、请求优化渲染阶段减少回流重绘、避免布局抖动交互阶段保持高帧率、避免卡顿持久运行阶段内存泄露处理、缓存命中策略一、加载性能优化(首屏速度为王)✅核心策略:资源体积优化JS/CSS/图片压缩(如gzip,brotli)Tree-shaking(去除无用代码)图片压缩(webp优先)合理拆包(
- Python隐式反馈数据集库之implicit使用详解
Rocky006
python开发语言
概要Implicit是一个专注于隐式反馈数据集的协同过滤推荐系统Python库,由BenFrederickson开发。与显式反馈(如用户明确给予的评分)不同,隐式反馈是指用户通过行为间接表达偏好的数据,如点击次数、浏览时长或购买历史。这类数据在实际应用中更为普遍,但也更难以处理。传统推荐系统如Surprise或LightFM虽然功能全面,但在处理大规模稀疏矩阵时性能不佳。Implicit库通过优化
- 3258. 统计满足 K 约束的子字符串数量 I
Joyner2018
python算法pythonleetcode开发语言数据结构
高效计算满足K约束的子字符串数量:两种解法解析在字符串处理问题中,如何高效地计算满足特定条件的子字符串个数是一个常见的挑战。在本篇博客中,我们将探讨一个典型的字符串问题:给定一个二进制字符串s和一个整数k,要求我们计算所有满足如下条件的子字符串数量:子字符串中0的数量不超过k,或者子字符串中1的数量不超过k我们将展示两种不同的解法:一种是暴力解法,另一种是使用滑动窗口技术的优化解法。问题分析假设我
- 亚马逊电商,关键词如何设置才能精准触达目标客户
跨境小渊
人工智能
“亚马逊广告关键词如何设置才能精准触达目标客户”“如何通过竞品ASIN截流获取高质量流量“”新品推广时怎样平衡ACOS和转化率”“长尾关键词挖掘有哪些高效方法“”自动化工具真的能提升广告投放效率吗”这些问题直指亚马逊广告优化的核心痛点,而今天我要分享的正是我们团队通过新的AI代运营类型的系统工具彻底解决了这些烦恼。亚马逊广告优化的现状与挑战在亚马逊这个全球最大的电商平台上,广告投放早已从"广撒网"
- 线性代数-第9篇:二次型与正定矩阵:优化问题的数学基础
程序员勇哥
人工智能(AI)线性代数人工智能大数据python
线性代数-第9篇:二次型与正定矩阵:优化问题的数学基础在人工智能、量化投资和大数据分析中,优化问题无处不在,比如机器学习的损失函数最小化、量化投资组合的风险最小化等。而二次型与正定矩阵作为线性代数中的重要概念,为解决这些优化问题提供了坚实的数学基础。本篇将深入解析它们的原理及其在实际场景中的关键应用。一、二次型:从向量到函数的桥梁1.定义与表达式二次型是一个关于向量x\mathbf{x}x的二次齐
- 【apache-maven3.9安装与配置】
大叔是90后大叔
Javaapachejavamaven
apache-maven3.9安装与配置apache-maven3.9安装与配置已安装JDK8+(推荐JDK11/17)安装步骤1.下载Maven3.92.解压并移动到安装目录3.配置环境变量4.验证安装配置优化1.镜像加速(国内用户必做)2.自定义本地仓库位置(可选)3.配置IDE中的Maven常见问题解决mvn:commandnotfound依赖下载失败JDK
- 元学习的认知思维棱镜
由数入道
AI辅助教学学习元学习思维模型认知框架思维棱镜
在学习这场马拉松中,大多数人只关注如何跑得更快(学习方法),但元学习关注的却是如何学会规划路线、调整呼吸、监测体能,甚至理解身体(大脑)的运作机制,从而跑得更远、更有效率。元学习(Meta-Learning)——“学会学习”的底层操作系统本质:元学习,简而言之,就是我们的大脑如何学习、如何反思学习过程、并如何优化学习策略的能力。它不是学习具体知识,而是学习如何学习知识本身。它好比你手中的智能手机,
- 电商用户行为可视化大屏--大数据项目
一.项目目的1.深入了解服务:用户的浏览路径、购买频率、商品评价等数据,能够精准地刻画用户画像。了解用户的年龄、性别、地域等基本信息,以及他们的兴趣爱好、消费习惯等更深入的特征,从而为个性化的营销和服务提供依据。2.优化用户体验:通过分析用户在页面之间的跳转时间、购物车的使用情况等,找出可能存在的流程不畅或设计不合理的地方。3.提高运营效率:对商品销售数据、库存数据等进行关联分析,有助于合理安排库
- 数据库领域下的时序数据库并发控制
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&Agent数据库时序数据库ai
时序数据库并发控制:原理、实现与最佳实践关键词:时序数据库、并发控制、MVCC、时间戳排序、乐观并发控制、分布式事务、性能优化摘要:本文深入探讨时序数据库中的并发控制机制,从基本原理到实际实现进行全面剖析。文章首先介绍时序数据库的特点和并发控制挑战,然后详细分析MVCC、时间戳排序等核心算法原理,并通过代码示例展示实现细节。接着探讨分布式环境下的特殊考量,提供性能优化策略和实际应用案例。最后展望未
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&