C#多线程学习(四) 多线程的自动管理(线程池)
在多线程的程序中,经常会出现两种情况:
一种情况: 应用程序中,线程把大部分的时间花费在等待状态,等待某个事件发生,然后才能给予响应
这一般使用ThreadPool(线程池)来解决;
另一种情况:线程平时都处于休眠状态,只是周期性地被唤醒
这一般使用Timer(定时器)来解决;
ThreadPool类提供一个由系统维护的线程池(可以看作一个线程的容器),该容器需要 Windows 2000 以上系统支持,因为其中某些方法调用了只有高版本的Windows才有的API函数。
将线程安放在线程池里,需使用ThreadPool.QueueUserWorkItem()方法,该方法的原型如下:
//将一个线程放进线程池,该线程的Start()方法将调用WaitCallback代理对象代表的函数
public static bool QueueUserWorkItem(WaitCallback);
//重载的方法如下,参数object将传递给WaitCallback所代表的方法
public static bool QueueUserWorkItem(WaitCallback, object);
ThreadPool类是一个静态类,你不能也不必要生成它的对象。而且一旦使用该方法在线程池中添加了一个项目,那么该项目将是无法取消的。
在这里你无需自己建立线程,只需把你要做的工作写成函数,然后作为参数传递给ThreadPool.QueueUserWorkItem()方法就行了,传递的方法就是依靠WaitCallback代理对象,而线程的建立、管理、运行等工作都是由系统自动完成的,你无须考虑那些复杂的细节问题。
首先程序创建了一个ManualResetEvent对象,该对象就像一个信号灯,可以利用它的信号来通知其它线程。
本例中,当线程池中所有线程工作都完成以后,ManualResetEvent对象将被设置为有信号,从而通知主线程继续运行。
初始化该对象时,用户可以指定其默认的状态(有信号/无信号);
在初始化以后,该对象将保持原来的状态不变,直到它的Reset()或者Set()方法被调用:
Reset()方法:将其设置为无信号状态;
Set()方法:将其设置为有信号状态。
WaitOne()方法:使当前线程挂起,直到ManualResetEvent对象处于有信号状态,此时该线程将被激活。然后,程序将向线程池中添加工作项,这些以函数形式提供的工作项被系统用来初始化自动建立的线程。当所有的线程都运行完了以后,ManualResetEvent.Set()方法被调用,因为调用了ManualResetEvent.WaitOne()方法而处在等待状态的主线程将接收到这个信号,于是它接着往下执行,完成后边的工作。
ThreadPool 的用法示例:
using System; using System.Collections; using System.Threading; namespace ThreadExample { //这是用来保存信息的数据结构,将作为参数被传递 public class SomeState { public int Cookie; public SomeState(int iCookie) { Cookie = iCookie; } } public class Alpha { public Hashtable HashCount; public ManualResetEvent eventX; public static int iCount = 0; public static int iMaxCount = 0; public Alpha(int MaxCount) { HashCount = new Hashtable(MaxCount); iMaxCount = MaxCount; } //线程池里的线程将调用Beta()方法 public void Beta(Object state) { //输出当前线程的hash编码值和Cookie的值 Console.WriteLine(" {0} {1} :", Thread.CurrentThread.GetHashCode(),((SomeState)state).Cookie); Console.WriteLine("HashCount.Count=={0}, Thread.CurrentThread.GetHashCode()=={1}", HashCount.Count, Thread.CurrentThread.GetHashCode()); lock (HashCount) { //如果当前的Hash表中没有当前线程的Hash值,则添加之 if (!HashCount.ContainsKey(Thread.CurrentThread.GetHashCode())) HashCount.Add (Thread.CurrentThread.GetHashCode(), 0); HashCount[Thread.CurrentThread.GetHashCode()] = ((int)HashCount[Thread.CurrentThread.GetHashCode()])+1; } int iX = 2000; Thread.Sleep(iX); //Interlocked.Increment()操作是一个原子操作,具体请看下面说明 Interlocked.Increment(ref iCount); if (iCount == iMaxCount) { Console.WriteLine(); Console.WriteLine("Setting eventX "); eventX.Set(); } } } public class SimplePool { public static int Main(string[] args) { Console.WriteLine("Thread Pool Sample:"); bool W2K = false; int MaxCount = 10;//允许线程池中运行最多10个线程 //新建ManualResetEvent对象并且初始化为无信号状态 ManualResetEvent eventX = new ManualResetEvent(false); Console.WriteLine("Queuing {0} items to Thread Pool", MaxCount); Alpha oAlpha = new Alpha(MaxCount); //创建工作项 //注意初始化oAlpha对象的eventX属性 oAlpha.eventX = eventX; Console.WriteLine("Queue to Thread Pool 0"); try { //将工作项装入线程池 //这里要用到Windows 2000以上版本才有的API,所以可能出现NotSupportException异常 ThreadPool.QueueUserWorkItem(new WaitCallback(oAlpha.Beta), new SomeState(0)); W2K = true; } catch (NotSupportedException) { Console.WriteLine("These API's may fail when called on a non-Windows 2000 system."); W2K = false; } if (W2K)//如果当前系统支持ThreadPool的方法. { for (int iItem=1;iItem < MaxCount;iItem++) { //插入队列元素 Console.WriteLine("Queue to Thread Pool {0}", iItem); ThreadPool.QueueUserWorkItem(new WaitCallback(oAlpha.Beta), new SomeState(iItem)); } Console.WriteLine("Waiting for Thread Pool to drain"); //等待事件的完成,即线程调用ManualResetEvent.Set()方法 eventX.WaitOne(Timeout.Infinite,true); //WaitOne()方法使调用它的线程等待直到eventX.Set()方法被调用 Console.WriteLine("Thread Pool has been drained (Event fired)"); Console.WriteLine(); Console.WriteLine("Load across threads"); foreach(object o in oAlpha.HashCount.Keys) Console.WriteLine("{0} {1}", o, oAlpha.HashCount[o]); } Console.ReadLine(); return 0; } } } }
SomeState类是一个保存信息的数据结构,它在程序中作为参数被传递给每一个线程,因为你需要把一些有用的信息封装起来提供给线程,而这种方式是非常有效的。
程序出现的InterLocked类也是专为多线程程序而存在的,它提供了一些有用的原子操作。
原子操作:就是在多线程程序中,如果这个线程调用这个操作修改一个变量,那么其他线程就不能修改这个变量了,这跟lock关键字在本质上是一样的。
结果:
Thread Pool Sample:
Queuing 10 items to Thread Pool
Queue to Thread Pool 0
Queue to Thread Pool 1
Queue to Thread Pool 2
Queue to Thread Pool 3
Queue to Thread Pool 4
Queue to Thread Pool 5
2 0 :
HashCount.Count==0, Thread.CurrentThread.GetHashCode()==2
Queue to Thread Pool 6
Queue to Thread Pool 7
Queue to Thread Pool 8
Queue to Thread Pool 9
Waiting for Thread Pool to drain
4 1 :
HashCount.Count==1, Thread.CurrentThread.GetHashCode()==4
6 2 :
HashCount.Count==1, Thread.CurrentThread.GetHashCode()==6
7 3 :
HashCount.Count==1, Thread.CurrentThread.GetHashCode()==7
2 4 :
HashCount.Count==1, Thread.CurrentThread.GetHashCode()==2
8 5 :
HashCount.Count==2, Thread.CurrentThread.GetHashCode()==8
9 6 :
HashCount.Count==2, Thread.CurrentThread.GetHashCode()==9
10 7 :
HashCount.Count==2, Thread.CurrentThread.GetHashCode()==10
11 8 :
HashCount.Count==2, Thread.CurrentThread.GetHashCode()==11
4 9 :
HashCount.Count==2, Thread.CurrentThread.GetHashCode()==4
Setting eventX
Thread Pool has been drained (Event fired)
Load across threads
11 1
10 1
9 1
8 1
7 1
6 1
4 2
2 2
我们应该彻底地分析上面的程序,把握住线程池的本质,理解它存在的意义是什么,这样才能得心应手地使用它。
C#多线程学习(五) 多线程的自动管理(定时器)
Timer类:设置一个定时器,定时执行用户指定的函数。
定时器启动后,系统将自动建立一个新的线程,执行用户指定的函数。
初始化一个Timer对象:
Timer timer = new Timer(timerDelegate, s,1000, 1000);
// 第一个参数:指定了TimerCallback 委托,表示要执行的方法;
// 第二个参数:一个包含回调方法要使用的信息的对象,或者为空引用;
// 第三个参数:延迟时间――计时开始的时刻距现在的时间,单位是毫秒,指定为“0”表示立即启动计时器;
// 第四个参数:定时器的时间间隔――计时开始以后,每隔这么长的一段时间,TimerCallback所代表的方法将被调用一次,单位也是毫秒。指定 Timeout.Infinite 可以禁用定期终止。
Timer.Change()方法:修改定时器的设置。(这是一个参数类型重载的方法)
使用示例: timer.Change(1000,2000);
Timer类的程序示例(来源:MSDN):
using System; using System.Threading; namespace ThreadExample { class TimerExampleState { public int counter = 0; public Timer tmr; } class App { public static void Main() { TimerExampleState s = new TimerExampleState(); //创建代理对象TimerCallback,该代理将被定时调用 TimerCallback timerDelegate = new TimerCallback(CheckStatus); //创建一个时间间隔为1s的定时器 Timer timer = new Timer(timerDelegate, s,1000, 1000); s.tmr = timer; //主线程停下来等待Timer对象的终止 while(s.tmr != null) Thread.Sleep(0); Console.WriteLine("Timer example done."); Console.ReadLine(); } //下面是被定时调用的方法 static void CheckStatus(Object state) { TimerExampleState s =(TimerExampleState)state; s.counter++; Console.WriteLine("{0} Checking Status {1}.",DateTime.Now.TimeOfDay, s.counter); if(s.counter == 5) { //使用Change方法改变了时间间隔 (s.tmr).Change(10000,2000); Console.WriteLine("changed"); } if(s.counter == 10) { Console.WriteLine("disposing of timer"); s.tmr.Dispose(); s.tmr = null; } } } }
程序首先创建了一个定时器,它将在创建1秒之后开始每隔1秒调用一次CheckStatus()方法,当调用5次以后,在CheckStatus()方法中修改了时间间隔为2秒,并且指定在10秒后重新开始。当计数达到10次,调用Timer.Dispose()方法删除了timer对象,主线程于是跳出循环,终止程序。
C#多线程学习(六) 互斥对象
如何控制好多个线程相互之间的联系,不产生冲突和重复,这需要用到互斥对象,即:System.Threading 命名空间中的 Mutex 类。
我们可以把Mutex看作一个出租车,乘客看作线程。乘客首先等车,然后上车,最后下车。当一个乘客在车上时,其他乘客就只有等他下车以后才可以上车。而线程与Mutex对象的关系也正是如此,线程使用Mutex.WaitOne()方法等待Mutex对象被释放,如果它等待的Mutex对象被释放了,它就自动拥有这个对象,直到它调用Mutex.ReleaseMutex()方法释放这个对象,而在此期间,其他想要获取这个Mutex对象的线程都只有等待。
下面这个例子使用了Mutex对象来同步四个线程,主线程等待四个线程的结束,而这四个线程的运行又是与两个Mutex对象相关联的。
其中还用到AutoResetEvent类的对象,可以把它理解为一个信号灯。这里用它的有信号状态来表示一个线程的结束。
// AutoResetEvent.Set()方法设置它为有信号状态
// AutoResetEvent.Reset()方法设置它为无信号状态
Mutex 类的程序示例:
using System; using System.Threading; namespace ThreadExample { public class MutexSample { static Mutex gM1; static Mutex gM2; const int ITERS = 100; static AutoResetEvent Event1 = new AutoResetEvent(false); static AutoResetEvent Event2 = new AutoResetEvent(false); static AutoResetEvent Event3 = new AutoResetEvent(false); static AutoResetEvent Event4 = new AutoResetEvent(false); public static void Main(String[] args) { Console.WriteLine("Mutex Sample "); //创建一个Mutex对象,并且命名为MyMutex gM1 = new Mutex(true,"MyMutex"); //创建一个未命名的Mutex 对象. gM2 = new Mutex(true); Console.WriteLine(" - Main Owns gM1 and gM2"); AutoResetEvent[] evs = new AutoResetEvent[4]; evs[0] = Event1; //为后面的线程t1,t2,t3,t4定义AutoResetEvent对象 evs[1] = Event2; evs[2] = Event3; evs[3] = Event4; MutexSample tm = new MutexSample( ); Thread t1 = new Thread(new ThreadStart(tm.t1Start)); Thread t2 = new Thread(new ThreadStart(tm.t2Start)); Thread t3 = new Thread(new ThreadStart(tm.t3Start)); Thread t4 = new Thread(new ThreadStart(tm.t4Start)); t1.Start( );// 使用Mutex.WaitAll()方法等待一个Mutex数组中的对象全部被释放 t2.Start( );// 使用Mutex.WaitOne()方法等待gM1的释放 t3.Start( );// 使用Mutex.WaitAny()方法等待一个Mutex数组中任意一个对象被释放 t4.Start( );// 使用Mutex.WaitOne()方法等待gM2的释放 Thread.Sleep(2000); Console.WriteLine(" - Main releases gM1"); gM1.ReleaseMutex( ); //线程t2,t3结束条件满足 Thread.Sleep(1000); Console.WriteLine(" - Main releases gM2"); gM2.ReleaseMutex( ); //线程t1,t4结束条件满足 //等待所有四个线程结束 WaitHandle.WaitAll(evs); Console.WriteLine(" Mutex Sample"); Console.ReadLine(); } public void t1Start( ) { Console.WriteLine("t1Start started, Mutex.WaitAll(Mutex[])"); Mutex[] gMs = new Mutex[2]; gMs[0] = gM1;//创建一个Mutex数组作为Mutex.WaitAll()方法的参数 gMs[1] = gM2; Mutex.WaitAll(gMs);//等待gM1和gM2都被释放 Thread.Sleep(2000); Console.WriteLine("t1Start finished, Mutex.WaitAll(Mutex[]) satisfied"); Event1.Set( ); //线程结束,将Event1设置为有信号状态 } public void t2Start( ) { Console.WriteLine("t2Start started, gM1.WaitOne( )"); gM1.WaitOne( );//等待gM1的释放 Console.WriteLine("t2Start finished, gM1.WaitOne( ) satisfied"); Event2.Set( );//线程结束,将Event2设置为有信号状态 } public void t3Start( ) { Console.WriteLine("t3Start started, Mutex.WaitAny(Mutex[])"); Mutex[] gMs = new Mutex[2]; gMs[0] = gM1;//创建一个Mutex数组作为Mutex.WaitAny()方法的参数 gMs[1] = gM2; Mutex.WaitAny(gMs);//等待数组中任意一个Mutex对象被释放 Console.WriteLine("t3Start finished, Mutex.WaitAny(Mutex[])"); Event3.Set( );//线程结束,将Event3设置为有信号状态 } public void t4Start( ) { Console.WriteLine("t4Start started, gM2.WaitOne( )"); gM2.WaitOne( );//等待gM2被释放 Console.WriteLine("t4Start finished, gM2.WaitOne( )"); Event4.Set( );//线程结束,将Event4设置为有信号状态 } } }
程序的输出结果:
Mutex Sample
- Main Owns gM1 and gM2
t1Start started, Mutex.WaitAll(Mutex[])
t2Start started, gM1.WaitOne( )
t3Start started, Mutex.WaitAny(Mutex[])
t4Start started, gM2.WaitOne( )
- Main releases gM1
t2Start finished, gM1.WaitOne( ) satisfied
t3Start finished, Mutex.WaitAny(Mutex[])
- Main releases gM2
t1Start finished, Mutex.WaitAll(Mutex[]) satisfied
t4Start finished, gM2.WaitOne( )
Mutex Sample
从执行结果可以很清楚地看到,线程t2,t3的运行是以gM1的释放为条件的,而t4在gM2释放后开始执行,t1则在gM1和gM2都被释放了之后才执行。Main()函数最后,使用WaitHandle等待所有的AutoResetEvent对象的信号,这些对象的信号代表相应线程的结束。
参考:http://kb.cnblogs.com/page/42532/