- 从决策树到随机森林:Python机器学习里的“树形家族“深度实战与原理拆解
小张在编程
机器学习决策树随机森林
引言在机器学习的算法森林中,有一对"树形兄弟"始终占据着C位——决策树像个逻辑清晰的"老教授",用可视化的树状结构把复杂决策过程拆解成"是/否"的简单判断;而它的进阶版随机森林更像一支"精英军团",通过多棵决策树的"投票表决",在准确性与抗过拟合能力上实现了质的飞跃。无论是医疗诊断中的疾病预测,还是金融风控里的违约判别,这对组合都用强大的适应性证明着自己的"算法常青树"地位。今天,我们就从原理到实
- C#.NET in、out、ref详解
c#.net
简介在C#中,in、ref和out是用于修改方法参数传递方式的关键字,它们决定了参数是按值传递还是按引用传递,以及参数是否必须在传递前初始化。基本语义对比修饰符传递方式可读写性必须初始化调用前必须赋值典型场景ref引用传递可读可写需先在调用前初始化是修改调用者变量;传大对象避免拷贝in只读引用传递只读(不能赋值)需先在调用前初始化是传递大值类型以避免拷贝out引用传递必须在方法体内赋值调用前可未初
- Django项目前后端类型中,用户注册功能实现笔记(第一部分)
后端django
用户注册前端逻辑为了学会使用Vue.js的双向绑定实现用户的交互和页面局部刷新效果。1.用户注册页面绑定Vue数据1.准备div盒子标签......2.register.html绑定内容:变量、事件、错误提示等{{csrf_input}}用户名:[[error_name_message]]密码:请输入8-20位的密码确认密码:两次输入的密码不一致号:[[error_mobile_message]]
- AIGC领域Prompt工程:原理、方法与行业应用
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶AIGCpromptai
AIGC领域Prompt工程:原理、方法与行业应用关键词:Prompt工程、大语言模型(LLM)、提示设计、少样本学习、AIGC应用、思维链(CoT)、提示优化摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,大语言模型(如GPT-4、LLaMA、通义千问)的性能已达到前所未有的高度。然而,模型的强大能力能否被充分释放,很大程度上依赖于"提示(Prompt)"的设计质量。本文系统解析Prom
- 深入详解:随机森林算法——概念、原理、实现与应用场景
猿享天开
算法随机森林机器学习
深入详解:随机森林算法——概念、原理、实现与应用场景随机森林(RandomForest,RF)是一种经典的集成学习算法,广泛应用于机器学习任务。本文将通过图文结合的方式,全面解析随机森林的核心原理、实现细节和应用实践,帮助读者建立系统认知。1.核心概念与直观理解1.1什么是随机森林?随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树进行协同预测。其核心思想是"三个臭皮匠,顶个诸葛亮"——多
- NB-IoT协议深度解析与应用实践.zip
豪欧巴
本文还有配套的精品资源,点击获取简介:NB-IoT(窄带物联网)是针对LPWAN(低功耗广域网络)领域设计的物联网技术,其特点是覆盖广泛、功耗低、设备连接能力强。技术概述包括了NB-IoT的技术目标和特点,如深度覆盖、高效节能、大连接能力及低成本。核心特性涵盖了物理层、媒介接入控制层、网络层、会话层以及应用层的协议栈分析。此外,还介绍了NB-IoT的部署模式,以及在智慧城市、智能表计、资产追踪、农
- 数据标注师学习内容汇总
试着
数据标注师学习数据标注师
目录文本标注图像标注语音标注文本标注词性标注1词性标注2实体标注关系标注事件标注1事件标注2意图标注关键词标注分类标注问答标注对话标注图像标注拉框标注关键点标注2D标注3D标注线标注目标跟踪标注OCR标注图像分类标注语音标注语音切割转写语音校对标注拼音和停顿标注
- SELinux 从理论到实践:深入解析与实战指南
智驾
LinuxSELinuxTEELinux安全启动
文章目录引言:为什么需要SELinux?第一部分:SELinux核心理论1.1SELinux的三大核心模型1.2安全上下文(SecurityContext)1.3策略语言与模块化第二部分:实战操作指南2.1SELinux状态管理2.2文件上下文管理2.3服务配置与排错第三部分:高级技巧与最佳实践3.1自定义策略模块开发3.2常见问题与解决方案总结:SELinux的价值与学习路径参考引言:为什么需要
- 「Ant Design 组件库探索」一:整体结构+工程化设置
梦玄海
elasticsearch大数据搜索引擎
本篇文章是学习了整体结构以及工程化配置后的总结,所以内容很长,不用从头读到尾,请结合实际项目和兴趣点进行分节点阅读。AIIDE设置这里的IDE设置主要是针对cursor的,看得出来,cursor是非常的火,这个库也支持了;这个cursor的目录结构是这样的:.cursor/└──rules/├──demo.mdc├──docs.mdc├──git.mdc├──locale.mdc├──naming
- 从Python到数据结构:为什么这是每个自学者必经的进阶之路
流水煮香茗
python数据结构mooc
当你熟练掌握Python语法后,下一步应该学什么?答案是数据结构。本文将深入分析为什么数据结构是编程进阶的关键,以及如何选择合适的学习资源。一、Python学会了,然后呢?如果你正在读这篇文章,很可能你已经:用Python写过小工具,能解决工作和生活中的一些小需求做过数据分析,会用pandas处理Excel表格但是,当你想要进一步提升时,却发现了一些困惑:困惑1:代码能跑,但总觉得"不够优雅"你的
- 星际争霸多智能体挑战赛(SMAC)
资源存储库
多智能体强化学习人工智能
目录TheStarCraftMulti-AgentChallenge星际争霸多智能体挑战赛Abstract摘要1Introduction1引言2RelatedWork2相关工作3Multi-AgentReinforcementLearning3多智能体强化学习Dec-POMDPs12-POMDPs(十二月-POMDP)Centralisedtrainingwithdecentralisedexec
- python ks值计算_风控模型中的K-S理解以及python实现
weixin_39747293
pythonks值计算
笔者在工作中计算单变量的ks值时,发现几个分布不同的变量好y计算的ks值相同,凭借统计直觉,发现一定存在问题,笔者从数据和计算ks代码两个方向进行排除。最后定位到计算使用stats.ks_2samp()函数计算ks值时,如果变量存在缺失值,计算得到ks值有误,下面笔者就来好好梳理一下ks值的前世今生。ks检验介绍笔者刚入门机器学习开始做的例子就是金融场景下风控模型。那时评价模型的好坏就用传统的机器
- 我的世界进阶模组开发教程——机械动力的数据生成(1)
lemon_sjdk
我的世界
机械动力注册元素的方式是依赖registrateAPI来实现注册的,这个API和之前说的GlitchCore库所用的注册方式高效多了,不管是开发效率还是可维护性,都比bop式注册好多了,因此学习第三篇和第四篇文章是重中之重代码解析:Create模组主类(Create.java)核心字段解析基础标识字段ID="create":模组唯一标识符,用于资源定位(如create:gear)。NAME="Cr
- 我的世界1.20.1forge模组开发进阶教程——Geckolib动画实体(3)
lemon_sjdk
java我的世界模组开发
注意:本章涉及大量的geckolib底层代码,补充讲解了上一节没讲的,如果看不懂请去学习JavaGeoEntity////Sourcecoderecreatedfroma.classfilebyIntelliJIDEA//(poweredbyFernFlowerdecompiler)//packagesoftware.bernie.geckolib.animatable;importjavax
- 浅谈卷积神经网络(CNN)
cyc&阿灿
cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetworks,CNN)作为深度学习领域最具影响力的架构之一,已在计算机视觉、自然语言处理、医学影像分析等领域取得了革命性突破。本文将系统全面地剖析CNN的核心原理、关键组件、经典模型、数学基础、训练技巧以及最新进展,通过理论解析与代码实践相结合的方式,帮助读者深入掌握这一重要技术。一、CNN基础与核心思想1.1传统神经网络的局限性在处理图像等
- AlphaStar 星际首秀,人工智能走向星辰大海
谷歌开发者
文/王晶,资深工程师,GoogleBrain团队作者王晶,现为GoogleBrain团队的资深工程师,主要致力深度强化学习的研发,和DeepMind团队在强化学习的应用上有许多合作。北京时间1月25日凌晨2点,DeepMind直播了他们的AIAlphaStar和人类顶尖的职业电竞选手对战星际争霸2。根据DeepMind介绍,AlphaStar在2018年12月10日和19日先后以5:0全胜的战绩击
- 随机森林详解:原理、优势与应用实践
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能DecisionTree数据挖掘
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!随机森林介绍1.定义:随机森林是一种强大的、高度灵活的集成学习(EnsembleLearning)算法,主要用于分类和回归任务。它的核心思想是构建多棵决策树(DecisionTree),并将这些树的预测结果进行组合(例如,分类任务采用投票,回归任务采用
- 集成学习基础:Bagging 原理与应用
大千AI助手
人工智能Python#OTHER集成学习机器学习人工智能算法决策树Bagging
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!Bagging介绍1.定义与全称:Bagging是BootstrapAggregating的缩写,中文常译为装袋法。它是一种并行式的集成学习方法。核心目标是通过构建多个基学习器的预测结果进行组合(通常是投票或平均),来获得比单一基学习器更稳定、更准确、
- 经济学神图:洛伦兹曲线
大千AI助手
人工智能Python#OTHER决策树人工智能DecisionTree算法洛伦兹曲线基尼
洛伦兹曲线(LorenzCurve)是衡量社会收入或财富分配不平等程度的经典可视化工具,由美国统计学家马克斯·洛伦兹(MaxOttoLorenz)于1905年提出。它不仅是理解基尼系数的核心基础,也是经济学、社会学中分析资源分配公平性的关键图表。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!往期文
- **双生“基尼”**:跨越世纪的术语撞车与学科分野
在学术的宇宙中,“基尼”(Gini)这个名字如同一个奇特的星标,闪耀在两个看似毫不相关的领域:衡量社会贫富差距的经济学与驱动人工智能的机器学习。然而,当人们在这两个领域都遇到“基尼指数”或“基尼系数”时,困惑油然而生——它们为何如此不同?又为何共享同一个名字?这不是某个“傻逼”的随意命名,而是一场跨越学科与世纪的“术语交通事故”,其背后是学术传承与概念抽象的交织。本文由「大千AI助手」原创发布,专
- 【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
IT古董
人工智能课程机器学习算法神经网络
第二章:机器学习与神经网络概述第三部分:类算法理论与实践第三节:决策树分类器内容:信息增益、剪枝技术、过拟合与泛化能力。决策树是一种常用于分类和回归的树状结构模型,它通过一系列特征判断进行决策,有良好的可解释性。一、基本概念节点(Node):表示特征判断条件边(Branch):表示特征判断的结果路径叶子节点(Leaf):表示分类结果二、划分准则:信息增益(InformationGain)信息增益衡
- 第 3 章:神经网络如何学习
鱼摆摆拜拜
神经网络学习人工智能
第3章:神经网络如何学习在第二章中,我们详细了解了神经网络的静态结构:由神经元组成的层,以及连接它们的权重和偏置。现在,我们将进入整个教程最核心的部分:神经网络是如何从数据中"学习"的?这个学习过程是一个动态的、不断调整自身参数以求更佳预测的过程。我们将通过四个关键概念来揭示这个秘密:前向传播(ForwardPropagation):数据如何通过网络产生一个预测?损失函数(LossFunction
- Python LDAP库在Windows 64位环境中的应用
规则哥讲规则
本文还有配套的精品资源,点击获取简介:PythonLDAP库是一个开源模块,它让Python开发者能够与LDAP服务器进行交互,执行操作如连接、查询、修改目录信息等。该库针对Python3.6和3.7版本优化,并适用于Windows64位架构。解压缩后,可以通过pip安装至项目中,实现集中式身份验证和数据管理功能。1.LDAP技术与Python交互概述LDAP(轻量级目录访问协议)是一种应用广泛的
- 【二】19.关于LCD和LTDC
我滴Yang
#STM32MP157驱动入门fpga开发
前言:。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.LCD简介:(1)什么是LCD:全称LiquidCrystalDisplay,其构造是在两片平行得玻璃基板中放置液晶盒,下基板玻璃上设置TFT(薄膜晶体管),上基板玻璃上设置彩色滤光片,通过TFT上的信号与电压改变来控制液晶分子的转动方向,从而达到控制每个像素点偏振光出射与否而达到显示目的。(2)
- 【PyTorch】2024保姆级安装教程-Python-(CPU+GPU详细完整版)
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3pythonpytorch人工智能
【PyTorch】2024保姆级安装教程(CPU+GPU详细完整版)PyTorch是当前最受欢迎的深度学习框架之一。本文将详细讲解在Python环境中安装PyTorch,包括CPU和GPU版本的全方位指南。一、前置环境首先确保已安装Python环境,推荐使用Python3.8或以上版本。验证Python安装:python--versionpip--version推荐使用虚拟环境(如conda或ve
- Bootstrap 5学习教程,从入门到精通,Bootstrap 5 侧边栏导航(Offcanvas) 语法知识点及案例(26)
知识分享小能手
Bootstrap5前端开发网页开发bootstrap学习前端typescriptjavascripthtmlcss
Bootstrap5侧边栏导航(Offcanvas)语法知识点及案例一、Offcanvas语法知识点1.基本结构Offcanvas由以下几个主要部分组成:触发按钮(通常带有data-bs-toggle="offcanvas"属性)Offcanvas容器(带有.offcanvas类)关闭按钮(通常放在offcanvas内部)2.核心类.offcanvas:主容器.offcanvas-start/.o
- Bootstrap 5学习教程,从入门到精通,Bootstrap 5 表单语法知识点及案例(28)
知识分享小能手
前端开发Bootstrap5网页开发bootstrap学习前端typescripthtmlcssjavascript
Bootstrap5表单语法知识点及案例Bootstrap5提供了强大而灵活的表单控件和布局选项。一、基础表单结构Bootstrap5表单需要以下基本结构:基础表单示例Bootstrap5基础表单邮箱地址我们不会将您的邮箱分享给其他人。密码记住我提交二、表单控件1.输入框(Input)Bootstrap5提供了多种输入框样式:文本输入邮箱输入密码输入数字输入日期输入2.文本域(Textarea)文
- Bootstrap 5学习教程,从入门到精通,Bootstrap 5 滚动监听(Scrollspy)语法知识点及案例代码(25)
知识分享小能手
网页开发Bootstrap5前端开发bootstrap学习前端javascripttypescripthtmlcss
Bootstrap5滚动监听(Scrollspy)语法知识点及案例代码Bootstrap5的Scrollspy组件允许根据用户的滚动位置自动更新导航链接的激活状态。这对于创建具有固定导航栏的单页网站特别有用,能够提升用户体验和导航的便捷性。一、Scrollspy语法知识点1.基本结构要使用Scrollspy,需要以下几个关键部分:导航栏(Navbar):包含指向页面不同部分的链接。目标容器(Tar
- 从入门到精通:前端工程师必学的 JSON 全解析
前端视界
前端json状态模式ai
从入门到精通:前端工程师必学的JSON全解析关键词:JSON、前端工程师、数据交换、JavaScript、数据格式摘要:本文围绕前端工程师必学的JSON展开全面解析。从JSON的基本概念、背景知识入手,深入探讨其核心原理、算法实现、数学模型等方面。通过详细的代码示例和实际应用场景分析,帮助前端工程师从入门到精通掌握JSON的使用。同时,提供了丰富的学习资源、开发工具和相关论文推荐,最后对JSON的
- RDKit:药物化学和分子数据处理的强大工具库
碳酸的唐
机器学习人工智能
引言在药物研发、化学信息学和分子设计领域,高效处理和分析分子数据是至关重要的。RDKit作为一个开源的化学信息学和机器学习工具包,为研究人员和数据科学家提供了丰富的功能,包括分子操作、描述符计算、指纹生成、相似性比较、子结构搜索和分子可视化等。本文将详细介绍RDKit的主要功能、应用场景以及实际操作示例,展示这一强大工具在分子数据处理中的核心价值。RDKit简介RDKit是一个由C++和Pytho
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那