转自:http://1985wanggang.blog.163.com/blog/static/77638332010424102256740/
从Oracle8i开始Oracle提供采样表扫描特性。
Oracle访问数据的基本方法有:
1.全表扫描
2.采样表扫描
全表扫描(Full table Scan)
全表扫描返回表中所有的记录。
执行全表扫描,Oracle读表中的所有记录,考查每一行是否满足WHERE条件。Oracle顺序的读分配给该表的每一个数据块,这样全表扫描能够受益于多块读.
每个数据块Oracle只读一次.
采样表扫描(sample table scan)
采样表扫描返回表中随机采样数据。
这种访问方式需要在FROM语句中包含SAMPLE选项或者SAMPLE BLOCK选项.
SAMPLE选项:
当按行采样来执行一个采样表扫描时,Oracle从表中读取特定百分比的记录,并判断是否满足WHERE子句以返回结果。
SAMPLE BLOCK选项:
使用此选项时,Oracle读取特定百分比的BLOCK,考查结果集是否满足WHERE条件以返回满足条件的纪录.
Sample_Percent:
Sample_Percent是一个数字,定义结果集中包含记录占总记录数量的百分比。
Sample值应该在[0.000001,99.999999]之间。
1.使用SAMPLE选项
SQL> select * from employee SAMPLE(30);
EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO ---------- ---------- --------- ---------- --------- ---------- ---------- ---------- 7369 SMITH CLERK 7902 17-DEC-80 800 20 7788 SCOTT ANALYST 7566 19-APR-87 3000 20 7839 KING PRESIDENT 17-NOV-81 5000 10
Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=2 Card=25 Bytes=2175) 1 0 TABLE ACCESS (SAMPLE) OF 'EMPLOYEE' (Cost=2 Card=25 Bytes=2175)
Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 5 consistent gets 0 physical reads 0 redo size 880 bytes sent via SQL*Net to client 503 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 3 rows processed
SQL> select * from employee SAMPLE(20);
EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO ---------- ---------- --------- ---------- --------- ---------- ---------- ---------- 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30 7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=2 Card=16 Bytes=1392) 1 0 TABLE ACCESS (SAMPLE) OF 'EMPLOYEE' (Cost=2 Card=16 Bytes=1392)
Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 5 consistent gets 0 physical reads 0 redo size 839 bytes sent via SQL*Net to client 503 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 2 rows processed |
2.使用SAMPLE BLOCK选项
SQL> SELECT * FROM employee SAMPLE BLOCK (50);
EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO ---------- ---------- --------- ---------- --------- ---------- ---------- ---------- 7369 SMITH CLERK 7902 17-DEC-80 800 20 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30 7566 JONES MANAGER 7839 02-APR-81 2975 20 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30 7782 CLARK MANAGER 7839 09-JUN-81 2450 10 7788 SCOTT ANALYST 7566 19-APR-87 3000 20 7839 KING PRESIDENT 17-NOV-81 5000 10 7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
10 rows selected.
Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=2 Card=41 Bytes=3567) 1 0 TABLE ACCESS (SAMPLE) OF 'EMPLOYEE' (Cost=2 Card=41 Bytes=3567)
Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 4 consistent gets 0 physical reads 0 redo size 1162 bytes sent via SQL*Net to client 503 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 10 rows processed
SQL> |
3.采样前n条记录的查询
也可以使用dbms_random包实现
SQL> select * from ( 2 select * from employee 3 order by dbms_random.value ) 4 where rownum <= 4;
EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO ---------- ---------- --------- ---------- --------- ---------- ---------- ---------- 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30 7839 KING PRESIDENT 17-NOV-81 5000 10 7369 SMITH CLERK 7902 17-DEC-80 800 20 7788 SCOTT ANALYST 7566 19-APR-87 3000 20
Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE 1 0 COUNT (STOPKEY) 2 1 VIEW 3 2 SORT (ORDER BY STOPKEY) 4 3 TABLE ACCESS (FULL) OF 'EMPLOYEE'
Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 3 consistent gets 0 physical reads 0 redo size 927 bytes sent via SQL*Net to client 503 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 1 sorts (memory) 0 sorts (disk) 4 rows processed |
对比一下SAMPLE选项
SQL> SELECT * FROM employee SAMPLE (40);
EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO ---------- ---------- --------- ---------- --------- ---------- ---------- ---------- 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30 7839 KING PRESIDENT 17-NOV-81 5000 10 7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=2 Card=33 Bytes=2871) 1 0 TABLE ACCESS (SAMPLE) OF 'EMPLOYEE' (Cost=2 Card=33 Bytes=2871)
Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 5 consistent gets 0 physical reads 0 redo size 961 bytes sent via SQL*Net to client 503 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 5 rows processed
SQL> |
主要注意以下几点:
1.sample只对单表生效,不能用于表连接和远程表
2.sample会使SQL自动使用CBO
===============================
【1】方法一:通过dbms_random.random
select * from (select * from largetable order by dbms_random.random) where rownum <= 20000;
【2】方法二:通过dbms_random.value
select * from (select * from largetable order by dbms_random.value) where rownum <= 20000;
【3】方法三:通过采样表扫描
select * from (select * from largetable sample(10)) where rownum <= 20000;
下面我们通过实践来比较这3种方法的效率,首先我们创建一个包含有10W条记录的表用于实验:
create table LARGETABLE
(
ID NUMBER not null primary key,
BIRTHDAY DATE not null
)
接下来我们插入10W条数据
create or replace procedure random_insert as
i number;
startDate date := sysdate;
begin
for i in 1 .. 100000 loop
insert into largetable values (i, startDate + 1);
end loop commit;
end;
在SQL*PLUS下设置显示SQL语句执行时间:set timing on,让后分别运行上述三条语句:
第一个的执行时间为 00: 00: 16: 04
第二个的执行时间为 00: 00: 54: 04
第三个的执行时间为 00: 00: 08: 07
从这里我们可以看出在进行数据随机抽取时,采用sample的方法效率是最高的。为了保证每次随机查询的数据尽量不重复,我们可以把sample中的百分比提高一些(例如从10%提高到20%)。