- 6、关于Medical-Transformer
安逸sgr
Transformertransformer深度学习人工智能计算机视觉
6、关于Medical-TransformerAxial-Attention原文链接:Axial-attentionMedical-Transformer原文链接:Medical-TransformerMedical-Transformer实际上是Axial-Attention在医学领域的运行,只是在这基础上增加了门机制,实际上也就是在原来Axial-attention基础之上增加权重机制,虚弱位
- 文献学习-1-Continuum Robots for Medical Interventions
Metaphysicist.
文献学习机器人学习算法连续体机器人医疗机器人
Chapt5.连续体机构分析5.1文献学习5.1.1ContinuumRobotsforMedicalInterventionsAuthors:PIERREE.DUPONT,FellowIEEE,NABILSIMAAN,FellowIEEE,HOWIECHOSET,FellowIEEE,ANDCALEBRUCKER,MemberIEEE连续体机器人在医学上得到了广泛的应用,因为它们可以被设计成实现
- 如何安装opencart
wxban
opencartopencart安装
刚接触opencart,先介绍一下它的安装步骤吧,其实比较简单。我装的是opencart2.2.0.0版本的,小伙伴可以去他的官网下载https://www.opencart.com/(最新已经到2.3.0.2)不过旧一点的版本相对插件更多一些,喜欢新版本的可以自己选择,看个人喜好吧下面开始我们的安装:1、把下载到的压缩包解压后,我们可以得到这些文件2、不过我们只需要将upload里面的文件,所以
- opencart教程入门php,OpenCart安装教程
琴里鹅鹅
opencart教程入门php
首先到官方网站下载opencart安装包,然后解压缩,将upload文件夹下所有文件上传到您服务器网站的根目录。1.使用浏览器打开您的域名,例如:,您将看到下面的界面:将“Iagreetothelicense”后面的复选框选中,然后点击“Continue”按钮,您将会看到下面的界面:此页面主要是对您安装环境的检查,是否有不符合opencart运行的一些设置。然后点击“Continue”进入下一步:
- opencart教程入门php,初步安装 opencart 步骤
weixin_40004502
opencart教程入门php
第1步移动/www/wwwroot/--域名--/system/storage/到/www/wwwroot/--域名--/shujuzz/storage/第2步编辑根目录config.php文件更改define('DIR_STORAGE',DIR_SYSTEM.'storage/');到define('DIR_STORAGE','/www/wwwroot/--域名--/shujuzz/storag
- 一、Centos安装opencart详细教程步骤
程序之大道至简
opencartlinuxwebnginxphpopencart
一、购买腾讯云服务器1、去到腾讯云官网:https://cloud.tencent.com/product,点击“产品”->"云服务器“2、点击“立即选购“3、选择对应的服务器配置4、设置服务器的安全规则,点击“下一步:确定配置信息”5、确定配置信息,然后点击“立即购买”6、如果商品信息不合适可以点击“返回重新选择”,如果确定没问题则点击“提交订单”7、提交订单后进行付款8、购买后在控制台的云服务
- 安装opencart
Robin罗兵
服务器linux运维
一、安装模板InstallSOEmarketOpencart4Theme一:so_emarket_quick2二:themepackageinstallation1、installedopencartDefault2、Extensions->Installer->Upload->so_emarket_theme_oc4011_home21_to_home35_v2.0.3->so_theme.oc
- Medical Image Synthesis with Context-Aware Generative Adversarial Networks
22f9d17d554d
摘要计算机断层扫描(CT)对于各种临床应用至关重要,例如放射治疗计划以及PET衰减校正。但是,CT在采集过程中会暴露放射线,这可能对患者造成副作用。与CT相比,磁共振成像(MRI)更安全,并且不涉及任何辐射。因此,近来,对于放射治疗计划的情况,研究人员被极大地动机从同一对象的其对应的MR图像估计CT图像。在本文中,我们提出了一种数据驱动的方法来解决这一具有挑战性的问题。特别是,通过训练性的卷积网络
- 利用知识图谱构建医疗问答
Shy960418
知识图谱人工智能
1、准备数据集数据集下载地址:https://github.com/wangle1218/QASystemOnMedicalKG/blob/master/data/medical.json2、导入相关包frompy2neoimportGraph,Node,Relationship#在cmd中,输入neo4j.batconsole并回车importpandasaspd3、连接Neo4jneo_gra
- CV | Medical-SAM-Adapter论文详解及项目实现
夏天|여름이다
-CV-人工智能计算机视觉医学影像分割算法图像分割
*******************************⚕️医学影像相关直达⚕️*******************************CV|SAM在医学影像上的模型调研【20240207更新版】-CSDN博客CV|SegmentAnything论文详解及代码实现本文主要讲解Medical-SAM-Adapter论文及项目实现~2023.12.29第七版_MedicalSAMAda
- 卢敏老师微博2019年3月时事热词总结(3)
英语学习社
贫困代际传递povertyacrossgenerations生物燃料biofuel化石燃料fossilfuel新能源newenergy可再生能源renewableenergy工业云、金融云、政务云、医疗云、教育云、交通云industrial,finance,government,medical,educationandtransportationclouds人工智能伦理研究AIethics智能交通
- 文献翻译(BRAU-Net++: U-Shaped Hybrid CNN-Transformer Network for Medical Image Segmentation)
来自宇宙的曹先生
文献翻译cnntransformer人工智能
BRAU-Net++:U-ShapedHybridCNN-TransformerNetworkforMedicalImageSegmentationBRAU-Net:用于医学图像分割的U形混合CNN变换网络LibinLan,Member,IEEE,PengzhouCai,LuJiang,XiaojuanLiu,YongmeiLi,andYudongZhang,SeniorMember,IEEE摘要
- ConvFormer: Plug-and-Play CNN-StyleTransformers for Improving Medical ImageSegmentation
我在努力学习分割(禁止说我水平差)
cnn人工智能神经网络
ConvFormer:改进医学图像分割的即插即用CNN风格转换器摘要:Transformer在医学图像分割中被广泛研究,以建立成对的长程依赖关系(像素之间的长程依赖关系)。然而,相对有限的注释良好的医学图像数据使transformer难以提取不同的全局特征,(这句话指的是在医学图像数据中,往往存在着相对较少的注释信息,这些注释信息通常用于描述图像中的不同结构、病变或特征。由于注释信息有限,传统的深
- MedSegDiff-V2: Diffusion based Medical Image Segmentation with Transformer
我在努力学习分割(禁止说我水平差)
transformer深度学习人工智能
MedSegDiff-V2:基于变压器的扩散医学图像分割摘要扩散概率模型(DiffusionProbabilisticModel,DPM)最近在计算机视觉领域获得了广泛的应用,这要归功于它的图像生成应用,如Imagen、LatentDiffusionModels和StableDiffusion,这些应用已经展示了令人印象深刻的能力,并在社区内引发了许多讨论。最近的研究进一步揭示了DPM在医学图像分
- Jmeter,如何从数组参数中取值
sasasa_sa
jmeter
有个post请求,参数“equipment_ids”,是个数组,需求每次执行的时候,按顺序取equipment_ids中不同的值要实现在JMeter中每次执行请求时按顺序取不同的equipment_ids中的值,你可以使用Counter元件来生成索引,并将其与${__evalVar(equipment_ids_${index})}结合使用。以下是具体步骤:设置Counter元件:在线程组下添加一个
- BAPI_ALM_ORDER_MAINTAIN -- 创建维修工单
Jack.Huangjh
前端
BAPI_ALM_ORDER_MAINTAIN–创建维修工单FUNCTIONZFPM_034.*“----------------------------------------------------------------------"“本地接口:*”IMPORTING*”VALUE(I_NOTIF_NO)TYPEQMNUMOPTIONAL*"VALUE(I_EQUIPMENT)TYPEEQU
- 按照姓氏首字母进行排序
做个专注的工程师
java开发#java基础概念java
packagecom.dchealth.common.util;importcom.dchealth.common.utils.StringUtils;importcom.dchealth.medical.domain.vo.PatientVo;importjava.text.Collator;importjava.util.Collections;importjava.util.Comparat
- A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI学习笔记
ponytaill
学习人工智能
ASurveyonExplainableArtificialIntelligence(XAI):TowardMedicalXAI文章目录ASurveyonExplainableArtificialIntelligence(XAI):TowardMedicalXAI背景类型感知可解释性显著性信号方法语言可解释性通过数学结构的可解释性预定义模型特征提取灵敏性优化可解释性的其他角度数据驱动的可解释性不变
- 【论文阅读笔记】Towards Universal Unsupervised Anomaly Detection in Medical Imaging
cskywit
异常检测医学图像深度学习论文阅读笔记
TowardsUniversalUnsupervisedAnomalyDetectioninMedicalImagingarxiv,19Jan2024【开源】【核心思想】本文介绍了一种新的无监督异常检测方法—ReversedAuto-Encoders(RA),旨在提高医学影像中病理检测的准确性和范围。RA通过生成类似健康的重建图像,能够检测到更广泛的病理类型,这在现有技术中是一个挑战。RA方法在多
- vue超链接传值、查看页面以及父子传值
boJIke
vue.jsjavascriptecmascriptruoyi
{{scope.row.electricalNum}}初始表码:{{scope.row.electricalInitNum}} 结算表码:{{scope.row.electricalEndNum}} router-link这里需要去/src/router/index.js里面配置{path:'/equipment/electrical-data',component:Layou
- 美国对乌克兰军事经费进行援助
我以为的顿悟
TheUShasannounceditwillgiveUkraine$200m(£152m)tostrengthenitsdefencecapabilities.Inastatement,thePentagonsaidthefundswouldbefortraining,communications,medical,andothernon-lethaloperationalneeds.TheUSs
- 【论文阅读笔记】Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation
咔叽布吉
论文阅读学习论文阅读笔记transformer
1.介绍Swin-Unet:Unet-likePureTransformerforMedicalImageSegmentationSwin-Unet:用于医学图像分割的类Unet纯Transformer2022年发表在ComputerVision–ECCV2022WorkshopsPaperCode2.摘要在过去的几年里,卷积神经网络(CNN)在医学图像分析方面取得了里程碑式的成就。特别是基于U型
- 提升PrestaShop外贸电商网站安全的几款行业必备工具
presta_shop
PrestaShop网站安全PrestaShop电商新闻
提升PrestaShop外贸电商网站安全的几款行业必备工具PrestaShop发展历程PrestaShop是一款优秀且强大的外贸开源电商软件,我们开始使用PrestaShop始于2009年,那时PrestaShop还是0.9版本:界面清新,性能强悍,扩展友好等特性,既没有Magento的笨重,也没有ZenCart的古老,更没有OpenCart的脆弱,因此PrestaShop如雨后春笋,迅速风靡全球
- MiME: Multilevel Medical Embedding of Electronic Health Records for Predictive Healthcare
稀里糊涂林老冷
论文翻译
原文摘要 使用电子病历的许多医学健康预测任务重,深度学习模型展示出了非常杰出的表现。但是这些模型大都需要大量的训练数据,以超过其他大多数医疗系统的能力。一些外部资源,比如医学本体,经常被用作桥接数据量的约束,但是通常因为不一样的术语,导致这种方法还不能投入使用。为了解决数据不充足的挑战,我们利用了电子病例数据的特有的多层结构,尤其是医疗代码之间的编码关系。我们提出了个多层级医疗潜入Multilev
- 【论文阅读笔记】Sam3d: Segment anything model in volumetric medical images[
cskywit
SAM类医学图像分割论文阅读笔记
BuiNT,HoangDH,TranMT,etal.Sam3d:Segmentanythingmodelinvolumetricmedicalimages[J].arXivpreprintarXiv:2309.03493,2023.【开源】本文提出的SAM3D模型是针对三维体积医学图像分割的一种新方法。其核心在于将“分割任何事物”(SAM)模型的预训练编码器与一个轻量级的3D解码器相结合。与传统的
- 【论文阅读笔记】Prompt Tuning for Parameter-efficient Medical Image Segmentation
cskywit
医学图像分割prompts论文阅读笔记prompt
FischerM,BartlerA,YangB.Prompttuningforparameter-efficientmedicalimagesegmentation[J].MedicalImageAnalysis,2024,91:103024.【开源】【核心思想】本文的核心思想是提出了一种用于医学图像分割的参数高效的提示调整(PromptTuning)方法。这种方法基于预训练的神经网络,通过插入可
- MedSegDiff: Medical Image Segmentation withDiffusion Probabilistic Model
我在努力学习分割(禁止说我水平差)
神经网络
MedSegDiff:基于扩散概率模型的医学图像分割摘要:扩散概率模型(Diffusionprobabilisticmodel,DPM)是近年来计算机视觉研究的热点之一。它在Imagen、LatentDiffusionModels和StableDiffusion等图像生成应用中表现出了令人印象深刻的生成能力,引起了社区的广泛讨论。最近的许多研究还发现,它在许多其他视觉任务中也很有用,比如图像去模糊
- MedSegDiff: Medical Image Segmentation with Diffusion Probabilistic Model
计算机视觉-Archer
人工智能
摘要Diffusionprobabilisticmodel(DPM)recentlybecomesoneofthehottesttopicincomputervision.ItsimagegenerationapplicationsuchasImagen,LatentDiffusionModelsandStableDiffusionhaveshownimpressivegenerationcapa
- INR隐式神经表示综述(医学影像领域)Implicit Neural Representation in Medical Imaging: A Comparative Survey
天天写点代码
论文阅读笔记论文阅读深度学习图像处理INR医学影响医学影像
INR隐式神经表示综述摘要介绍INR的出现及优势INR在医学领域的应用BackgroundInputActivationFunctionOutputNeRFClinicalImportance(临床重要性)Taxonomy(分类法)ReconstructionSegmentationRegistration(配准)Compression(压缩)NeuralRendering(神经渲染)Compar
- 【论文学习】SOLVING INVERSE PROBLEMS IN MEDICAL IMAGING WITH SCORE-BASED GENERATIVE MODELS
Lyrig~
神经网络图像修复(ImageRestoration)学习机器学习算法
【论文学习】SOLVINGINVERSEPROBLEMSINMEDICALIMAGINGWITHSCORE-BASEDGENERATIVEMODELS前言相关概念线性逆问题基于分数的生成模型扰动过程逆过程采样利用基于分数的生成模型求解逆问题一种简便的线性测量过程形式将给定的观测结果融合进无条件采样过程前言好不容易写完了这么长的一篇,整体看来,这篇文章更像是对去噪过程的一个改进。通过在不同时间步引入
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite