mapreduce的文件拆分,FileInputFormat

在map之前会对要处理的文件进行拆分,按照定义的格式进行都写操作。主要是在InputFormat中,

InputFormat是一个抽象类,主要有两个抽象方法:

1,public abstract List<InputSplit> getSplits(JobContext context) throws IOException, InterruptedException;

确认输入的且分原则

2, public abstract RecordReader<K,V> createRecordReader(InputSplit split, TaskAttemptContext context ) throws IOException,InterruptedException;

按照指定格式读取数据

在起子类中需要实现这两个方法:

FileInputFormat:

配置FileInputFormat的参数:

1,mapred.input.pathFilter.class:输入文件过滤器,通过过滤器的文件才会加入InputFormat

public static void setInputPathFilter(Job job,
Class<? extends PathFilter> filter) {
job.getConfiguration().setClass("mapred.input.pathFilter.class", filter,
PathFilter.class);
}

2, mapred.min.split.size:最小的划分大

public static void setMinInputSplitSize(Job job,
long size) {
job.getConfiguration().setLong("mapred.min.split.size", size);
}

3, mapred.max.split.size:最大的划分大小;

public static void setMaxInputSplitSize(Job job,
long size) {
job.getConfiguration().setLong("mapred.max.split.size", size);
}

4, mapred.input.dir:输入路径,用逗号做分割。

conf.set("mapred.input.dir", dirs == null ? dirStr : dirs + "," + dirStr);


FileInputFormat实现了InputFormat的getSplits()方法,将输入的文件划分为InputSplit(输入块)。

/**
* Generate the list of files and make them into FileSplits.
*/
public List<InputSplit> getSplits(JobContext job
) throws IOException {
long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));
long maxSize = getMaxSplitSize(job);

// generate splits
List<InputSplit> splits = new ArrayList<InputSplit>();
for (FileStatus file: listStatus(job)) {
Path path = file.getPath();
FileSystem fs = path.getFileSystem(job.getConfiguration());
long length = file.getLen();
BlockLocation[] blkLocations = fs.getFileBlockLocations(file, 0, length);
if ((length != 0) && isSplitable(job, path)) {
long blockSize = file.getBlockSize();
long splitSize = computeSplitSize(blockSize, minSize, maxSize);

long bytesRemaining = length;
while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(new FileSplit(path, length-bytesRemaining, splitSize,
blkLocations[blkIndex].getHosts()));
bytesRemaining -= splitSize;
}

if (bytesRemaining != 0) {
splits.add(new FileSplit(path, length-bytesRemaining, bytesRemaining,
blkLocations[blkLocations.length-1].getHosts()));
}
} else if (length != 0) {
splits.add(new FileSplit(path, 0, length, blkLocations[0].getHosts()));
} else {
//Create empty hosts array for zero length files
splits.add(new FileSplit(path, 0, length, new String[0]));
}
}
LOG.debug("Total # of splits: " + splits.size());
return splits;
}

文件的划分是依据maxsizeBlockSizeminsize来的,

protected long computeSplitSize(long blockSize, long minSize,
long maxSize) {
return Math.max(minSize, Math.min(maxSize, blockSize));
}




另一个方法是:protected List<FileStatus> listStatus(JobContext job ) throws IOException

递归获取输入数据中的文件,其中的job包含前面的那几个参数,是系统的配置Configuration

/** List input directories.
* Subclasses may override to, e.g., select only files matching a regular
* expression.
*
* @param job the job to list input paths for
* @return array of FileStatus objects
* @throws IOException if zero items.
*/
protected List<FileStatus> listStatus(JobContext job
) throws IOException {
List<FileStatus> result = new ArrayList<FileStatus>();
Path[] dirs = getInputPaths(job);
if (dirs.length == 0) {
throw new IOException("No input paths specified in job");
}

List<IOException> errors = new ArrayList<IOException>();

// creates a MultiPathFilter with the hiddenFileFilter and the
// user provided one (if any).
List<PathFilter> filters = new ArrayList<PathFilter>();
filters.add(hiddenFileFilter);
PathFilter jobFilter = getInputPathFilter(job);
if (jobFilter != null) {
filters.add(jobFilter);
}
PathFilter inputFilter = new MultiPathFilter(filters);

for (int i=0; i < dirs.length; ++i) {
Path p = dirs[i];
FileSystem fs = p.getFileSystem(job.getConfiguration());
FileStatus[] matches = fs.globStatus(p, inputFilter);
if (matches == null) {
errors.add(new IOException("Input path does not exist: " + p));
} else if (matches.length == 0) {
errors.add(new IOException("Input Pattern " + p + " matches 0 files"));
} else {
for (FileStatus globStat: matches) {
if (globStat.isDir()) {
for(FileStatus stat: fs.listStatus(globStat.getPath(),
inputFilter)) {
result.add(stat);
}
} else {
result.add(globStat);
}
}
}
}

if (!errors.isEmpty()) {
throw new InvalidInputException(errors);
}
LOG.info("Total input paths to process : " + result.size());
return result;
}

切分之后有RecordReader来读取,

FileInputFormat没有对应的RecordReader,他的两个子类:

SequenceFileInputFormat二进制形式存放的键/值文件

TextInputFormat是文本文件处理,

他们的createRecordReader()分别返回SequenceFileRecordReaderLineRecordReader实例


hadoop默认的InputFormat是TextInputFormat,重写了FileInputFormat中的createRecordReader和isSplitable方法。该类使用的reader是LineRecordReader,即以回车键(CR = 13)或换行符(LF = 10)为行分隔符。







你可能感兴趣的:(mapreduce)