- 蓝桥杯新手算法练习题单|冲击国一(三)
小咖拉眯
蓝桥杯蓝桥杯java数据结构算法dfsbfs
此题单为算法基础精选题单,包含蓝桥杯常考考点以及各种经典算法,可以帮助你打牢基础,查漏补缺。本题单目标是冲击蓝桥杯省一国一,团体程序天梯赛个人国三、XCPC区域赛铜/银奖前言本次题单重点关注模拟类问题,DFS问题,BFS问题目录模拟类题型一、最大子矩阵二、世纪末的星期三、图像相似度四、操作系统DFS题型五、老子的全排列呢六、皇后问题七、池塘BFS题型八、迷宫九、八数码问题十、字符变换一、最大子矩阵
- 数据挖掘导论——第七章:聚类
Wis4e
数据挖掘聚类人工智能
什么是聚类?数据间的相似性和距离的测量方式有哪些?数据标准化如何进行距离计算?层次聚类的思想和流程?K-均值聚类的思想和流程?距离的计算方式如何影响聚类结果?聚类的要素,包括数据,差异性/相似性测量方式,聚类算法(标准化执行程序或流程)理解相似性和差异性的度量(p40)。Jaccard和余弦相似性度量。以下内容由AI生成:余弦相似度(CosineSimilarity)是一种衡量两个向量在方向上相似
- 《数据挖掘导论》 第二章数据
爱吃草莓的西瓜酱
数据挖掘导论数据挖掘
第二章数据数据类型数据质量数据预处理相似度测量数据Collectionofdataobjectsandtheirattributes特征值数值型的或者描述性的(男/女-->0/1)特征和特征值之间的区别:相同的属性可能被赋予不同的特征值,如身高的单位可能是米或者英尺不同的属性可以映射到相同的值集,如ID是无界的,age有最大值和最小值1.特征的类型Nominal(标称)Examples:IDnum
- 论文中自己写的内容会被标红吗?
kexiaoya2013
人工智能论文阅读论文笔记
很多人在写论文时,会担心一个问题,如果内容完全是自己写的,查重时会不会被系统标红?一、查重系统工作原理查重系统的核心功能是比对文本相似度。它会将你的论文与数据库中的海量文献进行对比,找出重复或高度相似的片段。要注意的是,查重系统并不会区分内容是谁写的,它只能关注文字本身的重复率。即使某段话是你原创的,但如果数据库中存在相似的表达,系统依然会判定为重复。二、为什么自己写的内容也可能被标红1、常用术语
- 论文阅读笔记:Graph Matching Networks for Learning the Similarity of Graph Structured Objects
游离态GLZ不可能是金融技术宅
知识图谱机器学习深度学习人工智能
论文做的是用于图匹配的神经网络研究,作者做出了两点贡献:证明GNN可以经过训练,产生嵌入graph-leve的向量可以用于相似性计算。作者提出了一种新的基于注意力的跨图匹配机制GMN(cross-graphattention-basedmatchingmechanism),来计算出一对图之间的相似度评分。(核心创新点)论文证明了该模型在不同领域的有效性,包括具有挑战性的基于控制流图(control
- KMeans实战——聚类和轮廓系数评估啤酒数据集
巷955
机器学习人工智能
原理:在数据分析和机器学习中,聚类是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本相似度较高,而不同簇之间的样本相似度较低。KMeans算法是其中最常用的聚类算法之一。本文将介绍如何使用KMeans算法对啤酒数据集进行聚类,并使用轮廓系数(SilhouetteScore)来评估聚类结果的质量。1.数据准备首先,我们需要导入必要的库并加载数据集。本文使用的数据集是一
- 使用Couchbase中的向量搜索进行智能查询
eahba
python
技术背景介绍Couchbase是一种强大的分布式NoSQL数据库,广泛应用于云、移动、AI和边缘计算应用中。其向量搜索功能,作为全文搜索服务的一部分,支持在应用中进行高效的语义查询。这为开发者在实现AI驱动的应用时提供了极大的便利。核心原理解析Couchbase的向量搜索利用向量嵌入技术对文本进行处理,可以实现基于语义相似度的查询。这与传统的关键词匹配有根本的不同,更适合AI应用场景中模糊或语义相
- 聚类分析|k-means聚类方法及其Python实现
皖山文武
数据挖掘商务智能kmeans聚类python数据挖掘机器学习
k-means聚类方法及其Python实现0.k-means算法简介1.k-means算法工作原理2.k-means算法流程3.k–means算法的Python实现0.k-means算法简介k-means算法由MacQueen在1967年提出。是一种经典的基于划分的聚类方法。划分方法(PartitioningMethod)是基于距离判断样本相似度,通过不断迭代将含有多个样本的数据集划分成若干个簇,
- 向量数据库简介
openwin_top
python编程示例系列python编程示例系列二数据库
向量数据库(VectorDatabase)是一种专门用于存储和查询向量数据的数据库系统。向量数据库通常使用高效的向量索引技术,支持基于向量相似度的查询和检索,可以应用于图像搜索、自然语言处理、推荐系统、机器学习等领域。与传统的关系型数据库不同,向量数据库通常使用基于向量的数据模型,将向量作为数据的核心表示形式。向量数据库可以存储和处理大量的向量数据,支持高效的向量相似度计算和查询。常见的向量索引技
- PTA L2-005 集合相似度
名字在哪啊
天梯刷题PTAL2-005集合相似度
题目给定两个整数集合,它们的相似度定义为:Nc/Nt×100%。其中Nc是两个集合都有的不相等整数的个数,Nt是两个集合一共有的不相等整数的个数。你的任务就是计算任意一对给定集合的相似度。输入格式:输入第一行给出一个正整数N(≤50),是集合的个数。随后N行,每行对应一个集合。每个集合首先给出一个正整数M(≤104),是集合中元素的个数;然后跟M个[0,109]区间内的整数。之后一行给出一个正整数
- 毕业论文查重六大误区,你踩坑了吗?
kexiaoya2013
论文笔记论文阅读
又到毕业季了,论文查重也成了无数同学的一块心病。有人熬夜改稿到崩溃,有人查重报告看懵圈,其实,很多焦虑都源于对查重的误解!那么,今天我们就来扒一扒那些年你踩过的查重坑,看完这篇保你少走弯路!误区一:认为重复率低就绝对安全查重系统本质上就是一个算法程序,它只能机械的比对文字相似度,根本看不懂你论文的学术价值。所以除了重复率符合学校标准外,同时还要确保内容的原创性和逻辑性合理。误区二:只用一个查重软件
- iOS:如何使用OpenVC库计算照片相似度
zzialx
ioscocoamacos
图像格式转换使用UIImage到cv::Mat的转换时,注意通道顺序(iOS使用BGRA格式)。性能优化对于移动端,可降低HOG参数复杂度(如减少方向数)。使用@autoreleasepool管理内存。动态阈值建议根据实际数据集通过ROC曲线确定最佳阈值。错误处理增加对空图像、无轮廓等异常情况的检查。**关键步骤:**1.引入OpenCV库2.涉及C++,需要将.m文件更新为.mm文件#pragm
- FastGPT 引申:混合检索完整实例
窝窝和牛牛
FastGPT开源
文章目录FastGPT引申:混合检索完整实例1.各检索方式的初始结果2.RRF合并过程3.合并后的结果4.Rerank重排序后5.最终RRF合并6.内容总结FastGPT引申:混合检索完整实例下边通过一个简单的例子说明不同检索方式的分值变化过程,假设我们有一个查询:“如何使用Python进行数据分析”1.各检索方式的初始结果向量检索结果(相似度分数0-1):1.{id:"doc1",q:"Pyth
- 相似度计算
Panesle
python人工智能算法
1.余弦相似度计算(不区分向量方向,互换顺序也相同)sen_vec1=sbert.get_sentence_emb(context15)#向量化sen_vec1=sen_vec1*(1.0/(np.linalg.norm(sen_vec1)+0.00001))#normal化sen_vec2=sbert.get_sentence_emb(context14)#向量化sen_vec2=sen_vec
- 基于OpenCV的Java人脸识别系统设计与实现
小呀白呀兔
javaspringboot
基于OpenCV的Java人脸识别系统设计与实现1.引言随着计算机视觉技术的发展,人脸识别在安全监控、身份验证等领域得到了广泛应用。本文将详细介绍如何使用OpenCV库和Java语言构建一个简单的人脸识别系统。该系统能够从图像中检测人脸,并通过深度学习模型提取特征进行比对,最终输出相似度评分及置信度等级。2.环境搭建为了确保项目顺利运行,请按照以下步骤配置开发环境:安装JDK:确保已安装JavaD
- 终于把所有的 Python 库都整理出来啦
编程简单学
程序员pythonpythondjango后端
常用库Chardet字符编码探测器,可以自动检测文本、网页、xml的编码。colorama主要用来给文本添加各种颜色,并且非常简单易用。Prettytable主要用于在终端或浏览器端构建格式化的输出。difflib,[Python]标准库,计算文本差异Levenshtein,快速计算字符串相似度。fuzzywuzzy,字符串模糊匹配。esmre,正则表达式的加速器。shortuuid,一组简洁UR
- 从专利数据中提取IPC代码,构建共现矩阵(IPC共同出现在同一专利为1,否则为0),利用GCN提取特征,并进行链路预测以评估IPC之间的相似度概率
pk_xz123456
算法深度学习矩阵线性代数
要完成这个任务,你可以按照以下步骤进行:数据预处理:从专利数据中提取IPC代码,并构建共现矩阵。图卷积网络(GCN):使用GCN提取特征。链路预测:评估IPC之间的相似度概率。以下是一个Python示例代码,展示了如何完成上述任务:importnumpyasnpimportnetworkxasnximporttorchimporttorch.nnasnnimporttorch.nn.functio
- 语义向量模型全解:从基础到现在的deepseek中的语义向量主流模型
来自于狂人
人工智能语言模型
一、语义向量模型:自然语言处理的基石语义向量模型(SemanticVectorModel)是自然语言处理(NLP)的核心技术,它将词汇、句子或文档映射为高维向量,在数学空间中量化语义信息。通过向量距离(如余弦相似度)衡量语义的相似性,支撑了搜索引擎、情感分析、机器翻译等实际应用。1.1发展简史1980s~2000s:基于统计的浅层模型,如TF-IDF(直接表征词的重要性)、LSA(通过矩阵分解降维
- 开源的向量数据库Milvus
研创通之逍遥峰
数据库数据库milvus
Milvus是一款开源的向量数据库,专为处理向量搜索任务而设计,尤其擅长处理大规模向量数据的相似度检索。官网地址:https://milvus.io/以下是关于Milvus的详细介绍:一、基本概念向量数据库:Milvus是一款云原生向量数据库,它支持多种类型的向量,如浮点向量、二进制向量等,并且可以处理大规模的向量数据。向量在Milvus中作为基本数据单元,用于表示高维空间中的点,可以是图像、音频
- BERT 模型 和 Milvus 向量数据库分步骤讲解如何实现「文本相似度搜索」
结合BERT模型和Milvus向量数据库,通过一个Python示例分步骤讲解如何实现「文本相似度搜索」。整个过程分为:文本向量化→存储到Milvus→相似度搜索。1️⃣环境准备安装必要的库:pipinstallpymilvustransformerstorch2️⃣流程图解BERT模型↓将文本转为向量Milvus数据库(存储所有向量)↓输入问题文本Milvus搜索相似向量→返回最相似的答案3️⃣完
- Milvus「非结构化数据」 的超级搜索引擎
后端机器学习深度学习
Milvus可以简单理解为一个专门处理「非结构化数据」的超级搜索引擎。它的核心价值是:帮你快速从海量数据(比如图片、音频、视频、文本)中找到最相似的内容。举个例子秒懂:假设你有100万张图片,你想找其中和「某张猫咪图片」最相似的10张。如果用传统方法(比如人工比对或普通数据库),可能需要几小时甚至更久。而Milvus可以在毫秒级完成搜索,就像用百度搜文字一样快。核心作用:向量相似度搜索非结构化数据
- DeepSeek vs text2vec:谁更适合Python题库向量提取对比
黑金IT
向量数据库pythonpython开发语言
在Python培训题库提取标题和答案用于学习的应用场景中,选择text2vec-large-chinese和DeepSeek的优劣取决于具体需求和资源限制。以下是对两种模型在该场景下的适用性分析:1.应用场景分析在Python培训题库中,常见的任务可能包括:题目相似度计算:判断题目是否重复或相似。自动分类:将题目按照难度、知识点等分类。智能推荐:根据用户的学习进度推荐相关题目。文本特征提取:用于后
- 1.7 Kaggle大白话:Eedi竞赛Transformer框架解决方案07-调用AI模型输出结果
AI量金术师
Kaggle竞赛人工智能transformer深度学习python算法
目录0.本栏目竞赛汇总表1.本文主旨2.调用AI模型输出结果架构3.模型准备3.1代码实现3.2大白话模型准备4.数据处理4.1代码实现4.2大白话数据处理5.特征提取5.1代码实现5.2大白话特征提取6.相似度匹配6.1代码实现6.2大白话相似度匹配7.系列总结7.1章节回顾7.2竞赛排名7.3其他优秀项目(皆为竞赛金牌)0.本栏目竞赛汇总表Kaggle竞赛汇总1.本文主旨大白话:上一篇文章中,
- 实体识别处理--在给定的文本中识别特定类型的实体
风清扬【coder】
自然语言分析处理算法深度学习人工智能nlp自然语言处理
整体功能概述这个算法实现了一个实体识别系统,主要用于在给定的文本中识别特定类型的实体。它结合了字典匹配和向量相似度匹配两种方法,利用预训练的BERT模型来获取实体的嵌入表示,通过构建Trie树来提高字典匹配的效率。代码结构和模块分析1.导入必要的库importtorchfromtorchimportnnfromtransformersimportBertTokenizer,BertModelfro
- mysql数据推荐算法_Mahout推荐算法基础
爱看书的小兔纸
mysql数据推荐算法
转载自(http://www.geek521.com/?p=1423)Mahout推荐算法分为以下几大类GenericUserBasedRecommender算法:1.基于用户的相似度2.相近的用户定义与数量特点:1.易于理解2.用户数较少时计算速度快GenericItemBasedRecommender算法:1.基于item的相似度特点:1.item较少时就算速度更快2.当item的外部概念易于
- 注意力机制是如何提取有用信息的?
人机与认知实验室
我们用通俗的方式解释注意力机制是如何通过比较查询(Query,Q)和键(Key,K)的相似度,来决定从值(Value,V)中提取多少有用信息的。场景:图书馆找书假设你在图书馆里,脑海中的问题是:“我想找一本关于人工智能的书。”(这就是你的查询,Q)。图书馆里的每本书都有一个标签,比如“人工智能入门”或“历史小说”(这些是键,K)。每本书的详细内容(比如具体的章节、知识点等)就是值,V。1、计算相似
- AI之DeepSeek
james二次元
AI人工智能AIDeepSeek
DeepSeek是一个开源的基于深度学习的搜索引擎,用于在大规模数据中进行高效的内容检索和相似度搜索。它利用深度学习技术,特别是嵌入(embedding)技术,以改进传统搜索引擎中基于关键词的匹配方式,能够对复杂的查询和内容进行更精确和智能的理解。DeepSeek主要侧重于基于语义的搜索,通过将数据(例如文本、图像、音频等)转换为向量表示,来实现更为精准的相似度搜索。它的应用场景包括但不限于自然语
- AI人工智能机器学习之聚类分析
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器学习之聚类分析,以KMeans、AgglomerativeClustering、DBSCAN为例,从代码层面讲述机器学习中的聚类分析。2、聚类分析-简介聚类分析是一种无监督学习的方法,用于将数据集中的样本划分为不同的组(簇),使得同一组中的样本相似度较高,而不同组之间的样本相似度较低。sklearn.cluster提供了多种聚类算法K均值聚类(K-MeansCl
- 人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具
学步_技术
自动驾驶人工智能人工智能深度学习自动驾驶机器学习
人工智能深度学习系列—深度解析:交叉熵损失(Cross-EntropyLoss)在分类问题中的应用人工智能深度学习系列—深入解析:均方误差损失(MSELoss)在深度学习中的应用与实践人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具人工智能深度学习系列—探索余弦相似度损失:深度学习中的相似性度量神器人工智能深度学习系列—深度学习中的边界框回归新贵:GHM(GeneralizedH
- 【RAG系列】文字的数字化分身 - 向量嵌入的魔法世界
什么都想学的阿超
原理概念#深度学习深度学习人工智能RAG
文字的数字化分身-向量嵌入的魔法世界文字向量编码器数字分身语义空间相似度计算代数运算关系推理一、认知革命:文字的数字基因工程1.1文字GPS坐标系想象每个词语都是银河系中的星球,向量坐标就是它们的星际坐标:经度:语义维度(动物/植物/人造物)纬度:情感维度(积极/中性/消极)高度:抽象维度(具体/抽象)#词语向量可视化示例words=["国王","王后","男人","女人","电脑"]embedd
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p