CentOS64位6.4下Hadoop2.7.1、Mysql5.5.46、Hive1.2.1、Spark1.5.0的集群环境部署


部署环境:

CentOS 6.4 64bit

Hadoop2.7.1、Mysql5.5、Hive1.2.1、Scala2.11.7、Spark1.5.0

jdk1.7.0_79

 

主机IP:

master(namenode):10.10.4.115

slave1(datanode):10.10.4.116

slave2(datanode):10.10.4.117

 

一、环境准备及Hadoop部署:

(1)环境准备(host配置必须一致,否则可能导致错误):

[root@master ~]#vi  /etc/hosts

127.0.0.1       localhost

10.10.4.115     master.hadoop

10.10.4.116     slave1.hadoop

10.10.4.117     slave2.hadoop

 

(2)设置主机名:

[root@master ~]#vi /etc/sysconfig/network

NETWORKING=yes

HOSTNAME=master.hadoop

 

(3)使其hostname即时生效:

可重启系统;

或者使用命令:

[root@master ~]#hostname master.hadoop

或者

[root@master ~]#echo  master.hadoop > /proc/sys/kernel/hostname 


(4)关闭防火墙服务:

[root@master ~]#service iptables stop

避免重启系统后iptables启动:

[root@master ~]#chkconfig iptables off

确认已关闭

[root@master ~]#chkconfig --list|grep iptables                                    

iptables        0:关闭  1:关闭  2:关闭  3:关闭  4:关闭  5:关闭  6:关闭

chkconfig关闭iptables并不能永久关闭iptables,在重启系统后,level3下会自动启动iptables,这时候我们可以将iptables规则清空后保存,间接达到永久关闭的需求:

echo  "" > /etc/sysconfig/iptables

 

(5)关闭selinux

[root@master ~]#vi /etc/sysconfig/selinux

修改SELINUX=disabled

 

(6)卸载默认安装的openjdk(hadoop官方建议使用oracle版本jdk):

检查是否安装):

[root@master ~]#rpm -qa|grep openjdk

卸载安装的openjdk:

[root@master ~]#rpm -e openjdk

 

(7)下载并安装oracle  jdk1.7.0_79:

[root@master ~]#rpm -ivh jdk-7u79-linux-x64.rpm

 

(8)设置环境变量:

[root@master ~]#vi /etc/profile

##############JAVA#############################

export JAVA_HOME=/usr/java/jdk1.7.0_79

export CLASSPATH=.:$JAVA_HOME/jre/lib:$JAVA_HOME/lib/tools.jar

export JRE_HOME=$JAVA_HOME/jre

export PATH=/usr/local/mysql/bin:$JAVA_HOME/bin:$PATH

################END############################

 

(9)使其生效:

[root@master ~]#source /etc/profile

 

(10)测试:

[root@master ~]#echo $JAVA_HOME

/usr/java/jdk1.7.0_79

 

(11)创建hadoop用户及群组:

[root@master ~]#useradd hadoop -p mangocity

 

(12)配置master免密码登录slave:

启用免密码登录ssh配置:

[root@master ~]#vi /etc/ssh/sshd_config

RSAAuthentication yes # 启用 RSA 认证

PubkeyAuthentication yes # 启用公钥私钥配对认证方式

AuthorizedKeysFile .ssh/authorized_keys # 公钥文件路径(和上面生成的文件同)

 

(13)设置完之后记得重启SSH服务,才能使刚才设置有效:

[root@master ~]#service sshd restart

 

#######以上设置slave服务器设置类同master##########

 

 

(14)在master上切换到hadoop用户,生成公钥:

[root@master ~]#su - hadoop

 

(15)生成公钥:

[hadoop@master ~]$ssh-keygen �Ct rsa �CP ''

[hadoop@master ~]$more /home/hadoop/.ssh/id_rsa.pub

ssh-rsa AAAB3**************************************************7RbuPw== [email protected]

 

(16)把id_rsa.pub内容追加到授权的key:

[hadoop@master ~]$cat /home/hadoop/.ssh/id_rsa.pub >> /home/hadoop/.ssh/authorized_keys

 

(17)验证本地免密码登录:

验证之前确认/home/hadoop/.ssh/authorized_keys的权限为600,即只有hadoop用户拥有rw权限:

[hadoop@master ~]$ ll ./.ssh/authorized_keys 

-rw-------. 1 hadoop hadoop 402 11月 18 01:53 ./.ssh/authorized_keys

如权限不对,则会导致免密码登录失败;如权限非600,则需要修改其权限为600:

[hadoop@master ~]$chmod 600 ~/.ssh/authorized_keys

 

(18)测试验证:

[hadoop@master ~]$ssh 127.0.0.1

The authenticity of host '127.0.0.1 (127.0.0.1)' can't be established.

RSA key fingerprint is 31:45:00:ff:a7:80:23:f2:2a:86:7f:13:0d:bf:f0:d6.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '127.0.0.1' (RSA) to the list of known hosts.

[email protected]'s password:(第一次登录需要输入密码)

[hadoop@master ~]$exit

[hadoop@master ~]$ssh 127.0.0.1

Last login: Mon Nov 23 09:52:02 2015 from localhost(第二次登录不需要输入密码,说明本地登录验证成功)

[hadoop@master ~]$

 

(19)设置slave服务器ssh免密码登录:

此时slave服务器的hadoop的家目录下是没有.ssh目录和authorized_keys的,需要手动建立:

[hadoop@slave1 ~]#su -hadoop

[hadoop@slave1 ~]$ls -a

.  ..  .bash_history  .bash_logout  .bash_profile  .bashrc  .gnome2     .viminfo

 

(20)手动建立目录、修改权限:

[hadoop@slave1 ~]$mkdir ./.ssh                                                     

[hadoop@slave1 ~]$chmod 700 ./.ssh                                            

                     

(21)手动创建文件、修改文件权限:

[hadoop@slave1 ~]$touch  ./.ssh/authorized_keys   

[hadoop@slave1 ~]$chmod 600  ./.ssh/authorized_keys 

[hadoop@slave1 ~]$ls -a      

.  ..  .bash_history  .bash_logout  .bash_profile  .bashrc  .gnome2   .ssh  .viminfo

 

(22)将master服务器上hadoop用户建立的公钥文件id_rsa.pub复制到slave服务器hadoop用户目录:

[hadoop@slave1 ~]$scp [email protected]:/home/hadoop/id_rsa.pub /home/hadoop/   

 

(23)将master服务器hadoop用户的公钥id_rsa.pub内容追加到授权的authorized_keys文件中:

[hadoop@slave1 ~]$cat /home/hadoop/.ssh/id_rsa.pub >> /home/hadoop/.ssh/authorized_keys

以上步骤在slave2服务器重复操作一遍,更改/etc/ssh/sshd_config配置并重启sshd服务。

 

(24)测试验证master免密码登录slave服务器配置:

[hadoop@master ~]$ssh slave1.hadoop

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '127.0.0.1' (RSA) to the list of known hosts.

[email protected]'s password:(第一次登录需要输入密码)

[hadoop@slave1 ~]$exit

logout

Connection to slave1.hadoop closed.

[hadoop@master ~]$ ssh slave1.hadoop

Last login: Mon Nov 23 19:25:05 2015 from master.hadoop(第二次登录不需要输入密码,且当前用户已切换到slave1的hadoop,说明无密码登录验证成功)

[hadoop@slave1 ~]$ 

验证master免密码登录slave2服务器的过程和slave1相同。

 

部署hadoop2.7.1到master:

(1)下载并解压源码包:

[root@master ~]#tar -xvf hadoop-2.7.1.tar.gz 

[root@master ~]#cp -Rv  ./hadoop-2.7.1 /usr/local/hadoop/

 

(2)/usr/local/hadoop建立一些需要用到的目录:

[root@master ~]#mkdir -p /usr/local/hadoop/tmp   /usr/local/hadoop/dfs/data    /usr/local/hadoop/dfs/name

[root@master ~]#chown -R hadoop:hadoop /usr/local/hadoop/

 

(3)设置环境变量(slave服务器与master一致):

vi /etc/profile

##############Hadoop###########################

export HADOOP_HOME=/usr/local/hadoop

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"

export PATH=/usr/local/mysql/bin:$HADOOP_HOME/bin:$PATH

################END############################

 

(4)使其生效:

source  /etc/profile生效

 

(5)切换到hadoop用户,修改hadoop相关配置,相关文件存放在$HADOOP_HOME/etc/hadoop/下,主要配置core-site.xml、hdfs-site.xml、mapred-site.xml、yarn-site.xml这几个site文件:

[root@master ~]#su - hadoop

[hadoop@master ~]$ cd /usr/local/hadoop/etc/hadoop/[root@master ~]#su - hadoop

[hadoop@master ~]$ cd /usr/local/hadoop/etc/hadoop/

 

(6)修改env环境变量文件,将hadoop-env.sh,mapred-env.sh,yarn-env.sh末尾都添加上JAVA_HOME环境变量:

[hadoop@master hadoop]$vi hadoop-env.sh

export JAVA_HOME=/usr/java/jdk1.7.0_79   ###在文件末尾添加上这一行,另外2个文件相同方式修改

 

修改site文件,相关配置如下:

(7)core-site.xml:

[hadoop@master hadoop]$more core-site.xml

<configuration>

<property>

  <name>fs.defaultFS</name>

  <value>hdfs://master.hadoop:9000</value>            #因后期需要整合hive,这里要用hostname

</property>

<property>

  <name>hadoop.tmp.dir</name>

  <value>file:/usr/local/hadoop/tmp</value>

  <description>Abasefor other temporary directories.</description>

</property>

</configuration>

 

(8)mapred-site.xml:

[hadoop@master hadoop]$more mapred-site.xml

<configuration>

  <property>

   <name>mapreduce.framework.name</name>

   <value>yarn</value>

</property>

</configuration>

 

(9)hdfs-site.xml:

[hadoop@master hadoop]$more hdfs-site.xml

<configuration>

<property>

  <name>dfs.namenode.secondary.http-address</name>

  <value>10.10.4.115:9001</value>

</property>

<property>

  <name>dfs.replication</name>

  <value>2</value>                         

</property>

 

(10)yarn-site.xml

[hadoop@master hadoop]$more yarn-site.xml

<configuration>

<property>

     <name>yarn.resourcemanager.hostname</name>

      <value>10.10.4.115</value>

</property>

<property>

   <name>yarn.nodemanager.aux-services</name>

   <value>mapreduce_shuffle</value>

  </property>

  <property>

   <name>yarn.resourcemanager.address</name>

   <value>10.10.4.115:8032</value>

  </property>

  <property>

   <name>yarn.resourcemanager.scheduler.address</name>

   <value>10.10.4.115:8030</value>

  </property>

  <property>

   <name>yarn.resourcemanager.resource-tracker.address</name>

   <value>10.10.4.115:8035</value>

  </property>

  <property>

   <name>yarn.resourcemanager.admin.address</name>

   <value>10.10.4.115:8033</value>

  </property>

  <property>

   <name>yarn.resourcemanager.webapp.address</name>

   <value>10.10.4.115:8088</value>

  </property>

 

(11)添加datanode节点:

[root@master ~]#vi slaves

10.10.4.116                     #可以填IP地址也可以填hostname

10.10.4.116

 

(12)部署datanode节点:

复制hadoop目录至slave1和slave2节点,并修改目录权限:

[root@master ~]#scp -r /usr/local/hadoop/ [email protected]:/usr/local/

[hadoop@slave1 ~]$chown -R hadoop:hadoop /usr/local/hadoop

[root@master ~]#scp -r /usr/local/hadoop/ [email protected]:/usr/local/

[hadoop@slave2 ~]$chown -R hadoop:hadoop /usr/local/hadoop

 

 

(13)格式化namenode:

[root@master ~]#su - hadoop

[hadoop@master ~]$cd /usr/local/hadoop

[hadoop@master hadoop]$./bin/hdfs namenode -format  

当出现“successfully formatted”提示,说明格式化成功。

 

(14)启动hadoop:

[hadoop@master hadoop]$./sbin/start-all.sh

 

(15)检查master(namenode)进程状态:

[hadoop@master hadoop]$ jps

2697 Jps

7820 SecondaryNameNode

7985 ResourceManager

7614 NameNode

出现以上结果说明namenode节点服务正常运行

 

(16)检查slave(datanode)进程状态:

[hadoop@slave1 ~]$ jps

18342 DataNode

30450 Jps

18458 NodeManager

 

(17)显示以上结果说明datanode节点服务正常运行

还可以通过网页监控集群状态等信息:

http://master.hadoop:8088

wKiom1ZUM2vB9Bc9AALshzIeWAs689.jpg

http://master.hadoop:50070

wKiom1ZUM1fgsCyMAAVCWLBYRjg627.jpg

至此,hadoop集群安装完成,接下来是和Hive的整合。

 

二、Hive和Hadoop的整合(hive安装在namenode节点上):

(1)安装mysql 5.5(也可以用yum安装,这里使用源码安装):

安装依赖包:

[root@master ~]#yum -y install gcc gcc-c++ ncurses ncurses-devel cmake

 

(2)下载相应源码包:

[root@master ~]#wget http://cdn.mysql.com/Downloads/MySQL-5.5/mysql-5.5.46.tar.gz

 

(3)添加mysql用户:

[root@master ~]#useradd -M -s /sbin/nologin mysql

 

(4)预编译:

[root@master ~]#tar -xzvf mysql-5.5.46.tar.gz

[root@master ~]#mkdir -p /data/mysql

[root@master ~]#cd mysql-5.5.46

[root@master mysql-5.5.46]#cmake . -DCMAKE_INSTALL_PREFIX=/usr/local/mysql \  ###mysql5.5版本之后,configura改成cmake

-DMYSQL_DATADIR=/data/mysql \

-DSYSCONFDIR=/etc \

-DWITH_INNOBASE_STORAGE_ENGINE=1 \

-DWITH_PARTITION_STORAGE_ENGINE=1 \

-DWITH_FEDERATED_STORAGE_ENGINE=1 \

-DWITH_BLACKHOLE_STORAGE_ENGINE=1 \

-DWITH_MYISAM_STORAGE_ENGINE=1 \

-DENABLED_LOCAL_INFILE=1 \

-DENABLE_DTRACE=0 \

-DDEFAULT_CHARSET=utf8mb4 \

-DDEFAULT_COLLATION=utf8mb4_general_ci \

-DWITH_EMBEDDED_SERVER=1

 

(5)编译安装:

[root@master mysql-5.5.46]#make 

[root@master mysql-5.5.46]#make install

 

(6)启动脚本,设置开机自启动:

[root@master mysql-5.5.46]#cp /usr/local/mysql/support-files/mysql.server /etc/init.d/mysqld

[root@master mysql-5.5.46]#chmod +x /etc/init.d/mysqld

[root@master mysql-5.5.46]#chkconfig --add mysqld

[root@master mysql-5.5.46]#chkconfig mysqld on

 

(7)初始化数据库:

[root@master mysql-5.5.46]#/usr/local/mysql/bin/mysqld --initialize-insecure --user=mysql --basedir=/usr/local/mysql --datadir=/data/mysql

 

(8)设置密码:

[root@master mysql-5.5.46]#mysql -uroot -p     #第一次执行时,会要求输入root账户密码

 

(9)建立hive数据库:

mysql>create database hive;

 

(10)建立hive账户并授权访问mysql权限:

mysql>grant all privileges on *.* to 'hive'@'%' identified by '123456' with grant option;    #设置用户名密码及访问权限授权

mysql>flush privileges;

mysql>alter database hivemeta character set latin1;                                                               #更改字符集类型

mysql>flush privileges;

mysql>exit

 

(11)测试hive账户:

[root@master mysql-5.5.46]#mysql -uhive -pmangocity

mysql>

测试登录成功

 

安装Hive:

(1)设置全局环境变量(行首添加):

[root@master ~]#vi /etc/profile

#############Hive##############################

export HIVE_HOME=/usr/local/hive-1.2.1

export HIVE_CONF_DIR=$HIVE_HOME/conf

export HIVE_LIB=$HIVE_HOME/lib 

export CLASSPATH=$CLASSPATH:$HIVE_LIB

export PATH=$HIVE_HOME/bin/:$PATH

###################END#########################

 

(2)使其生效:

[root@master ~]#source /etc/profile

 

(3)下载安装Hive:

[root@master ~]#tar -xzvf apache-hive-1.2.1-bin.tar.gz

[root@master ~#mv ./apache-hive-1.2.1  /usr/local/hive-1.2.1

 

(4)改变hive目录属组:

[root@master ~]#chown -R hadoop:hadoop /usr/local/hive-1.2.1

su - hadoop

[hadoop@master ~]$cd /usr/local/hive-1.2.1/


(5)将下载好的mysql-connector-java-5.1.6-bin.jar复制到hive 的lib下面:

[hadoop@master hive-1.2.1]$cp  /home/hadoop/mysql-connector-java-5.1.37-bin.jar /usr/local/hive-1.2.1/lib/

 

(6)将$HIVE_HOME/lib下jline-2.12.jar复制到hadoop对应的目录中,替换掉低版本的jline-0.9.94.jar,看通过find查找出具体目录:

[hadoop@master hive-1.2.1]$find /usr/local/hadoop -name jline*.jar

[hadoop@master hive-1.2.1]$mv /usr/local/hadoop/share/hadoop/yarn/lib/jline-0.9.4.jar /usr/local/hadoop/share/hadoop/yarn/lib/jline-0.9.4.jar.bak  #备份旧版本jar包

[hadoop@master hive-1.2.1]$cp /usr/local/hive-1.2.1/lib/jline-2.12.jar /usr/local/hadoop/share/hadoop/yarn/lib/

 

(8)hive环境变量设置:

编辑$HIVE_HOME/bin/hive-config.sh,页尾添加:

[hadoop@master hive-1.2.1]$vi /usr/local/hive-1.2.1/bin/hive-config.sh

export JAVA_HOME=/usr/java/jdk1.7.0_79

export HADOOP_HOME=/usr/local/hadoop

export HIVE_HOME=/usr/local/hive-1.2.1

 

(9)hive环境变量设置:

编辑$HADOOP_HOME/etc/hadoop/hadoop-env.sh,页尾添加:

[hadoop@master hive-1.2.1]$vi  /usr/local/hadoop/etc/hadoop/hadoop-env.sh

export HIVE_HOME=/usr/local/hive-1.2.1

export HIVE_CONF_DIR=/usr/local/hive-1.2.1/conf

 

(10)设置hive与mysql连接等参数等文件的配置:

[hadoop@master hive-1.2.1]$vi  /usr/local/hive-1.2.1/conf/hive-site.xml

<configuration>

<property>    

  <name>hive.metastore.local</name>                                                    #远程mysql还是本地mysql,这里是本地

  <value>ture</value>

</property>

<property>

  <name>javax.jdo.option.ConnectionURL</name>

  <value>jdbc:mysql://127.0.0.1:3306/hive?createDatabaseIfNotExist=true</value>     #JDBC相关参数

  <description>JDBC connect string for a JDBC metastore</description>

</property>

<property>

  <name>javax.jdo.option.ConnectionDriverName</name>

  <value>com.mysql.jdbc.Driver</value>

  <description>Driver class name for a JDBC metastore</description>    

</property>

<property>

  <name>javax.jdo.option.ConnectionUserName</name>

  <value>hive</value>

  <description>username to use against metastore database</description>                   #连接mysql所用账户

</property>

<property>

  <name>javax.jdo.option.ConnectionPassword</name>

  <value>123456</value>

  <description>password to use against metastore database</description>                  #连接mysql所用账户密码

</property>

</configuration>

 

(11)启动Hive:

[hadoop@master hive-1.2.1]$./bin/hive --service metastore &              #启动metastore,置于后台运行

[hadoop@master hive-1.2.1]$./bin/hive --service hiveserver &              #启动hiveserver,置于后台运行

 

(12)测试Hive,执行jps,会查看到有一个Runjar进程在运行:

[hadoop@master hive-1.2.1]$jps

5640 NameNode

6013 ResourceManager

5847 SecondaryNameNode

6490 RunJar

13978 Jps

 

(13)测试hive和hadoop及MySQL的整合:

[hadoop@master hive-1.2.1]$ ./bin/hive

SLF4J: Class path contains multiple SLF4J bindings.

SLF4J: Found binding in [jar:file:/usr/local/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]

SLF4J: Found binding in [jar:file:/usr/local/spark-1.5.0/lib/spark-assembly-1.5.0-hadoop2.6.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]

SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]

SLF4J: Class path contains multiple SLF4J bindings.

SLF4J: Found binding in [jar:file:/usr/local/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]

SLF4J: Found binding in [jar:file:/usr/local/spark-1.5.0/lib/spark-assembly-1.5.0-hadoop2.6.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]

SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]

15/11/24 10:12:24 WARN conf.HiveConf: HiveConf of name hive.metastore.local does not exist

Logging initialized using configuration in jar:file:/usr/local/hive-1.2.1/lib/hive-common-1.2.1.jar!/hive-log4j.properties

hive> show databases;

OK

default

Time taken: 1.878 seconds, Fetched: 1 row(s)

hive> show tables;

OK

Time taken: 2.025 seconds, Fetched: 1 row(s)

hive> create table test(name string, age int);                #尝试建立一张表

OK

Time taken: 2.952 seconds

hive> desc test;

OK

name                    string                                     

age                     int                                        

Time taken: 0.225 seconds, Fetched: 2 row(s)

hive> exit;

 

至此,hadoop集群与hive的整合完成,接下来是和spark的整合。

 

三丶Spark和Hadoop的整合

安装Scala:

 

(1)将压缩包解压至/usr/scala 目录:

[root@master ~]#tar -zxvf .//scala-2.11.7.tgz 

[root@master ~]#mv ./scala-2.11.7 /usr/local/scala-2.11.7

 

 

(2)目录授权给hadoop用户:

[root@master ~]#chown -R hadoop:hadoop /usr/local/scala-2.11.7

 

(3)设置环境变量:

[root@master ~]#vi /etc/profile

追加如下内容:

#############Scale#############################

export SCALA_HOME=/usr/local/scala-2.11.7

export PATH=$PATH:$SCALA_HOME/bin

####################END########################

 

(4)使其生效:

[root@master ~]#source /etc/profile

 

(5)测试Scala是否安装配置成功:

[hadoop@master ~]$ scala -version

Scala code runner version 2.11.7 -- Copyright 2002-2013, LAMP/EPFL

 

安装Spark

 

官网下载spark1.5.0:spark-1.5.0-bin-hadoop2.6.tgz

 

(1)将压缩包解压至/usr/local目录: 

[root@master ~]#tar -zxvf ./spark-1.5.0-bin-hadoop2.6.tgz 

[root@master ~]#mv  ./spark-1.5.0 /usr/local/spark-1.5.0

 

(2)目录授权给hadoop用户:

[root@master ~]#chown -R hadoop:hadoop /usr/local/spark-1.5.0

 

(3)设置环境变量:

[root@master ~]#vi  /etc/profile

追加如下内容

############Spark##############################

export SPARK_HOME=/usr/local/spark-1.5.0

export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin

#################END###########################

 

(4)使之生效

[root@master ~]#source /etc/profile

 

(5)测试Spark是否安装配置成功:

[root@master ~]#spark-shell --version

Welcome to

      ____              __

     / __/__  ___ _____/ /__

    _\ \/ _ \/ _ `/ __/  '_/

   /___/ .__/\_,_/_/ /_/\_\   version 1.5.0

      /_/

 

Type --help for more information.

 

(6)编辑/usr/local/hadoop/etc/hadoop/hadoop-env.sh,添加如下内容:

export SPARK_MASTER_IP=10.10.4.115

export SPARK_WORKER_MEMORY=1024m

 

(7)更改spark相关配置:

su - hadoop

cd /usr/local/spark.1.5.0 


(8)复制模板并编辑spark-env.sh ,配置相关环境变量

[hadoop@master spark-1.5.0]$mv ./conf/spark-env.sh.template  ./conf/spark-env.sh 

[hadoop@master spark-1.5.0]$vi ./conf/spark-env.sh 

export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop

export SCALA_HOME=/usr/local/scala-2.11.7

export JAVA_HOME=/usr/java/jdk1.7.0_79

export SPARK_MASTER_IP=10.10.4.115

export SPARK_WORKER_MEMORY=1024m

 

(9)配置slave节点服务器:

[hadoop@master spark-1.5.0]$vi ./conf/slaves

# A Spark Worker will be started on each of the machines listed below.

slave1.hadoop

slave2.hadoop

 

(10)切换到root用户,将scala和spark以及相关环境变量配置复制到datanode节点,即salve1和slave2服务器:

[root@master ~]#scp -r /usr/local/scala-2.11.7  [email protected]:/usr/local/scala-2.11.7 

[root@master ~]#scp -r /usr/local/spark.1.5.0 [email protected]:/usr/local/spark.1.5.0

登录到slave1服务器,将刚才复制的两个目录授权给hadoop:

chown -R hadoop:hadoop /usr/local/scala-2.11.7  /usr/local/spark.1.5.0

配置slave1服务器/etc/profile,/usr/local/hadoop/etc/hadoop/hadoop-env.sh,使其和master服务器保持一致,并使其生效。

 

 

[root@master ~]#scp -r /usr/local/scala-2.11.7  [email protected]:/usr/local/scala-2.11.7 

[root@master ~]#scp -r /usr/local/spark.1.5.0 [email protected]:/usr/local/spark.1.5.0

登录到slave2服务器,将刚才复制的两个目录授权给hadoop:

chown -R hadoop:hadoop /usr/local/scala-2.11.7  /usr/local/spark.1.5.0

配置slave2服务器/etc/profile,/usr/local/hadoop/etc/hadoop/hadoop-env.sh,使其和master服务器保持一致,并使其生效。

 

(11)启动spark和测试:

[hadoop@master spark-1.5.0]$./sbin/start-all.sh

 

可以通过jps查看namenode节点,会有一个Master进程在运行:

[hadoop@master spark-1.5.0]$jps

5640 NameNode

6013 ResourceManager

5847 SecondaryNameNode

6897 Master

15164 Jps

6490 RunJar

 过jps查看datanode节点,会有一个Worker进程在运行:

[hadoop@slave1 ~]$ jps


3982 Jps


31810 DataNode


32136 Worker


31928 NodeManager



也可以通过网页监控到相关信息:

http://master.hadoop:8080

wKiom1ZUMwKiUOvPAAONkcOyJZI955.jpg

 

至此,整个Hdoop、Hive、Spark集群环境部署完成。

                    

 


你可能感兴趣的:(部署,centos6.4,HADOOP集群,hadoop2.7.1,Hive1.2.1)