- 项目管理自动化:如何用技术优化资源日历?
项目管理实战手册
自动化运维ai
项目管理自动化:如何用技术优化资源日历?关键词:项目管理自动化、资源日历、智能调度、冲突检测、资源分配优化摘要:本文从项目管理中“资源日历”的核心痛点出发,结合自动化技术原理与实战案例,详细讲解如何通过技术手段(如AI算法、工具集成、低代码开发)优化资源日历管理。文章用“餐厅订座”“快递分拣”等生活案例类比技术概念,帮助读者理解复杂流程,最后通过Python代码实战演示自动化实现过程,为项目管理者
- MySQL数据库的优化技巧:数据合规
数据库管理艺术
数据库mysqlai
从性能到合规:MySQL数据库的双向优化实战指南关键词数据合规、MySQL优化、GDPR、数据脱敏、审计日志、访问控制、数据生命周期摘要在数据安全法规(如GDPR、《个人信息保护法》)日益严格的今天,企业数据库不仅要追求高性能,更需满足合规要求。本文将结合MySQL的实际场景,拆解"性能优化"与"数据合规"的协同路径,通过生活化比喻、代码示例和真实案例,帮助DBA、开发人员掌握从数据分类到脱敏、从
- 破译AI黑箱:如何用20行Python理解ChatGPT?
Ven%
简单入门pytorch人工智能pythonchatgpt
文章目录一、核心概念:大模型本质二、代码逐行解析(以线性回归为例)三、关键概念详解四、与大模型的本质联系五、大模型训练核心思想六、如何扩展成真实大模型七、总结:AI训练的本质一、核心概念:大模型本质大模型=复杂数学函数+数据驱动训练现实任务(如图像识别、语言翻译)过于复杂,人类无法直接编写数学函数解决。解决方案:构建参数化的数学模型(如神经网络)用大量数据训练,自动寻找最优参数得到能解决特定任务的
- mlflow案例
以下内容主要是翻译mlflow官方文档的一个教程。4.教程和示例4.1训练、服务和评估线性回归模型地址:Tutorial—MLflow2.4.1documentation本教程展示了如何使用MLflow端到端执行以下操作:(1)训练线性回归模型(2)将训练模型的代码打包为可重复使用和可复制的模型格式(3)将模型部署到一个简单的HTTP服务器中,使您能够对预测进行评分本教程使用的数据集将根据葡萄酒的
- pythonflow_MLflow系列1:MLflow入门教程(Python)
weixin_39872334
pythonflow
这篇教程展示了如何:训练一个线性回归模型将训练代码打包成一个可复用可复现的模型格式将模型部署成一个简单的HTTP服务用于进行预测这篇教程使用的数据来自UCI的红酒质量数据集,主要用于根据红酒的PH值,酸度,残糖量等指标来评估红酒的质量。我们会用到什么?安装MLflow和scikit-learn,推荐两种安装方式:安装MLflow及其依赖:pipinstallmlflow[extras]分别安装ML
- RabbitMQ(rabbitmq-delayed-message-exchange)实现延时任务
qiang_gege
rabbitmqrabbitmq分布式springboot中间件
引言:什么是延时任务?在我们生活中比较常业务见场景的如下:红包24小时未被查收,需要延迟执退还业务;订单下单之后30分钟后,用户如果没有付钱,系统需要自动取消订单在如上场景中延时周期为固定时段。另外还有一种延时周期不固定的业务场景如下:业务场景:平台方发布预运行计划,预计划中需限定申报截至时间,参与方需在截止前申报各自实际运行计划给平台后由平台统筹运行计划安排。需求分析:由于是预计划,会存在截至时
- 无限弹窗(python)
在线码BUG
python
生活中当我们给朋友发消息不回时就可以为他发送一个无限弹窗打代码,他因为好奇打开了那么他就中计了,没有中计我们也不会损失什么importtkinterastkimportrandomimportthreadingimporttimedefdow():window=tk.Tk()window.title('你是XX')window.geometry("200x50"+"+"+str(random.ra
- PyTorch-Llama: 从零开始实现LLaMA 2模型教程
乔昕连
PyTorch-Llama:从零开始实现LLaMA2模型教程pytorch-llamaLLaMA2implementedfromscratchinPyTorch项目地址:https://gitcode.com/gh_mirrors/py/pytorch-llama1.项目介绍PyTorch-Llama是一个在PyTorch平台上完全从零开始实现的LLaMA2模型仓库。该模型是一个强大的自回归语言模
- c++中的绑定器
2301_80355452
c++开发语言算法
C++中的“绑定器”其实是指函数绑定工具,主要是用来将函数、对象、参数等绑定在一起,用于后续调用。这在回调函数、事件处理、异步编程中非常常见。接下来我会详细、通俗地介绍“绑定器”的核心概念、用法,以及一些常用的标准库工具。一、什么是“绑定器”?简单来说,绑定器就是一个能够绑定(封装)函数和其参数的工具或对象,让你可以像调用普通函数一样调用它,背后实际上是调用被绑定的函数并传递绑定的参数。举个生活例
- 解密GPT工作原理:Transformer架构详解与自注意力机制剖析
AI智能应用
gpttransformer架构ai
解密GPT工作原理:Transformer架构详解与自注意力机制剖析关键词:GPT、Transformer、自注意力机制、神经网络、语言模型、深度学习、人工智能摘要:本文将深入浅出地解析GPT模型的核心架构——Transformer,重点剖析其革命性的自注意力机制。我们将从基本概念出发,通过生活化的比喻解释复杂的技术原理,并用Python代码示例展示实现细节,最后探讨这一技术的应用场景和未来发展方
- 【机器学习】什么是逻辑回归?从入门到精通:掌握逻辑回归与二分类问题的解决之道
宸码
模式识别机器学习机器学习python逻辑回归分类人工智能算法
从入门到精通:掌握逻辑回归与二分类问题的解决之道引言1.1逻辑回归简介1.2逻辑回归的应用场景逻辑回归基本原理2.1逻辑回归概述逻辑回归的基本思想预测类别的概率2.2线性模型与Sigmoid函数线性模型Sigmoid函数Sigmoid函数的性质为什么选择Sigmoid函数2.3逻辑回归的输出:概率值分类决策代价函数与优化数学基础3.1逻辑回归的假设与目标假设目标3.2对数似然函数概率模型对数似然函
- LoRA微调详解:如何为AIGC模型节省90%显存
SuperAGI2025
AI大模型应用开发宝典AIGCai
LoRA微调详解:如何为AIGC模型节省90%显存关键词:LoRA、低秩适应、AIGC模型、参数高效微调、显存优化摘要:在AIGC(人工智能生成内容)领域,大模型(如GPT-3、LLaMA、StableDiffusion)的微调需要消耗海量显存,普通用户或企业难以负担。本文将深入解析LoRA(Low-RankAdaptation,低秩适应)这一参数高效微调技术,通过生活类比、数学原理、代码实战和应
- 西南交通大学【机器学习实验1】
实验目的理解和掌握回归问题和分类问题模型评估方法,学会使用均方误差、最大绝对误差、均方根误差指标评估回归模型,学会使用错误率、精度、查全率、查准率、F1指标评价分类模型。实验内容给定回归问题的真实标签和多个算法的预测结果,编程实现MSE、MAE、RMSE三种评测指标,对模型进行对比分析。给定二分类问题真实标签和多个算法的预测结果,编程实现混淆矩阵评测,采用错误率、精度、查全率、查准率、F1指标对结
- 用sklearn库中的算法对数据集进行训练和auc评估(个人学习笔记)
ZD困困困
python机器学习
本文为个人学习笔记,仅供学习参考,欢迎讨论,要是有哪里写的不对或有疑问的欢迎讨论。题目:运用已给数据集进行模型训练,使用逻辑回归、决策树、随机森林和AdaBoost几个算法进行训练,并打印各个算法训练后的auc评价指标。文章目录1.导入数据集①read_csv():读取数据并以某字符分隔。②merge():合并③drop():删除行或列④tolist():将数组或矩阵转换为列表⑤train_tes
- 学习笔记(29):训练集与测试集划分详解:train_test_split 函数深度解析
宁儿数据安全
#机器学习学习笔记深度学习
学习笔记(29):训练集与测试集划分详解:train_test_split函数深度解析一、为什么需要划分训练集和测试集?在机器学习中,模型需要经历两个核心阶段:训练阶段:用训练集数据学习特征与目标值的映射关系(如线性回归的权重)。测试阶段:用测试集评估模型在未见过的数据上的表现,避免“过拟合”(模型只记住训练数据的噪声,无法泛化到新数据)。类比场景:学生通过“练习题”(训练集)学习知识,再通过“考
- 程序员摆摊,一天赚了57块
程序员
去年的离职帖其中有一段“摆摊经历引得了不少前同事和朋友的关注和追问,于是便想着记录一下这次心血来潮的摆摊尝试经历。(我们的务实小摊)启程:为啥想尝试一下摆摊?去年离职后到未入职新公司的空窗期,时间像被按下暂停键的影片,悬浮在生活固有的轨道之外。告别了熟悉的工位与代码,时间忽然变得宽裕而轻盈。正是在这短暂的缝隙里,同事朋友小仪发来一条信息,一个想法跃然屏上:要不,试试去摆个摊?念头一旦冒出,就像投入
- 支付宝小程序优化秘籍:生活号联动玩法
zhuzhuyaolai
小程序生活大数据
在竞争激烈的移动应用生态中,支付宝小程序要想脱颖而出,实现流量与用户留存的突破,与生活号的联动运营是一大有力法宝。据支付宝小程序官方团队统计,同时运营小程序和生活号的商家,小程序留存率相较单边运营小程序的商家平均高出70%。下面就为大家详细解析支付宝小程序与生活号的联动玩法。相互导流,构建流量互通桥梁新用户关注生活号,自动跳转小程序利用权益吸引用户关注生活号,在用户关注成功后,自动跳转到小程序领取
- 机器学习:集成算法的装袋法(Bagging):随机森林(Random Forest)
rubyw
#概念及理论机器学习算法随机森林
随机森林(RandomForest)是一种集成学习方法,通过构建多个决策树并结合其预测结果来提升模型的性能和稳定性。它由LeoBreiman于2001年提出,广泛应用于分类和回归任务。以下是随机森林的详细介绍,包括其基本概念、构建过程、优缺点及应用场景。基本概念随机森林是一种基于决策树的集成算法,通过生成多棵决策树,并将这些树的预测结果结合起来,以提高整体模型的预测准确性和稳定性。每棵决策树都是在
- 机器学习在智能金融风险评估中的应用:信用评分与欺诈检测
Blossom.118
机器学习与人工智能机器人机器学习人工智能python深度学习sklearn计算机视觉
在金融行业,风险评估是确保金融机构稳健运营的关键环节。随着大数据和机器学习技术的快速发展,金融机构开始探索如何利用机器学习算法来提高风险评估的准确性和效率。本文将探讨机器学习在智能金融风险评估中的应用,特别是信用评分和欺诈检测方面的最新进展,并分析其带来的机遇和挑战。一、智能金融风险评估中的信用评分(一)传统信用评分方法的局限性传统的信用评分主要依赖于人工规则和简单的统计模型,如逻辑回归。这些方法
- 抓大鹅教程电脑端秒通关……
小黄编程快乐屋
其他
大家好,我是小黄。最近抓大鹅小程序游戏很火,抓大鹅小游戏是由青岛蓝飞互娱科技股份有限公司开发并推出的一款休闲益智类三消游戏。在游戏中,玩家需要在特定的“购物篮子”背景下,找到三个相同的物品并将其消除。游戏的玩法简单有趣,因此风靡网络。玩法跟之前的羊了个羊类似。最近小黄也试着玩了一下,发现小黄实力有点差,不是在看广告就是在看广告的路上。越消除越觉得气人。所以,小黄给他上点科技,在进行科技之前我们需要
- 大语言模型:是逐字生成还是一次多词?
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython算法prompt人工智能自然语言处理均值算法
大语言模型(LLM)既可以按顺序逐个生成单词(token),也能实现一次生成多个token核心差异源于解码策略与模型架构设计一、常规“逐个生成”模式(基础逻辑)多数入门级演示或简单文本生成中,LLM会默认按“生成一个token→拼接回输入→再生成下一个”的流程,本质是自回归(Auto-Regressive)机制的基础应用。比如用小语言模型续写“今天天气____”:模型先基于“今天天气”预测第一个t
- 【MV】策略模式 vs规则引擎
等风来不如迎风去
AI入门与实战策略模式
策略模式是一种很实用的设计模式,让我用通俗的方式给你解释:策略模式的核心思想把"做什么"和"怎么做"分开,让同一个问题可以有多种解决方案,并且可以灵活切换。生活中的例子情景:你要去机场问题:怎么去机场?策略1:打车(快但贵)策略2:地铁(便宜但慢)策略3:开车(灵活但要停车)选择器ÿ
- 聚象生活APP最新进展:公布解决方案积极应对,全力保障用户权益
弃***惜
生活
一、事件最新动态:处理方案已公布近日,聚象生活APP及其关联主体山西光恒建筑工程有限公司疑似发布公告,针对线上惠农助农项目运营调整问题提出具体解决方案。据多方信息显示,该公司正积极与用户沟通协商,力求妥善解决相关问题。这一积极态度表明,聚象生活APP正努力维护用户权益,推动事件向好的方向发展。根据天眼查公开信息,山西光恒建筑工程有限公司成立于2018年,注册资本5000万元,此前主要承接市政工程项
- AttributeError: module ‘openai‘ has no attribute ‘ChatCompletion‘解决方案
爱编程的喵喵
Python基础课程pythonAttributeErroropenaiChatCompletion解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了AttributeError:mod
- Linux 2.6 内核的嵌入式系统应用
anxiongshan
linux嵌入式多媒体系统嵌入式操作系统h.264任务
摘要:在分析Linux2.6内核新特性的基础上,在S3C2410开发板上移植了2.6内核和新的文件系统,并成功地对H.264编解码多媒体系统提供了支持。关键词:Linux内核嵌入式系统S3C2410随着多媒体技术与通讯技术相结合的信息技术的快速发展和互联网的广泛应用,PC时代也过渡到了后PC时代。在数字信息技术和网络技术高速发展的后PC时代,嵌入式技术越来越与人们的生活紧密结合。操作系统为用户使用
- 电子电气架构 --- SOVD功能简单介绍
汽车电子实验室
思考车载总线类型汽车行业架构电气电子架构开发的应对策略电子电气架构开发语言ECU刷写与busoff原则SOVD功能简单介绍
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师:简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活,除了生存温饱问题之外,没有什么过多的欲望,表面看起来很高冷,内心热情,如果你身边有这样灵性的人,一定要好好珍惜他们眼中有神有光,干净,给人感觉很舒服,有超强的感知能力有形的无形的感知力很强,能感知人的内心变化喜欢独处,好静,
- 视频内存太大怎么压缩变小一点?视频压缩的常用方法
这辈子谁会真的心疼你
音视频压缩视频压缩文件
视频传生活或者工作中很常见,如发送视频邮件、在线视频播放、视频上传下载等。未压缩的大内存视频文件传输时,不仅会消耗大量的网络带宽资源,还会使传输时间大幅增加。在网速有限的情况下,发送一个几GB的未压缩视频可能需要数小时甚至更长时间;而压缩后的视频,传输时间会大幅缩短,用户体验得到显著提升。对于在线视频平台,压缩视频能降低服务器压力,使更多用户可以流畅观看视频,减少卡顿现象。下面是一个使用FFmpe
- 代码探秘人工智能
万能小贤哥
人工智能
当你在手机上用语音发送消息,当短视频平台精准推送你感兴趣的内容,当智能音箱陪你聊天解闷,背后都有一位“隐形伙伴”——人工智能。它就像从科幻电影中走出的神奇力量,正悄然改变着我们的生活。今天,就让我们借助简单的Python代码,开启一场探索人工智能奥秘的奇妙之旅!人工智能:计算机的“超能力大脑”想象一下,如果给计算机装上“大脑”,让它学会像人类一样思考、学习和解决问题,会发生什么?这就是人工智能(A
- 职业本科智能终端开发实训室解决方案
武汉唯众智创
智能终端开发实训室智能终端开发智能终端APP开发实训室APP开发智能终端实训室
一、引言在数字化时代的浪潮下,智能终端已成为人们生活与工作中不可或缺的工具。从智能手机、智能平板到各类可穿戴设备,智能终端的广泛应用深刻改变了人们的生活方式与工作模式。智能终端的迅猛发展,使得市场对相关专业人才的需求极为迫切。据权威机构预测,未来几年,智能终端开发领域的人才缺口将持续扩大,对具备扎实专业知识与丰富实践经验的高素质人才的需求尤为显著。职业本科教育作为培养应用型人才的重要阵地,在智能终
- 深圳程序员“车居”四年:省钱、自由与质疑并存
程序员陆通
产品经理AI编程
这几年失业,大龄被裁的程序员越来越多,关于程序员的故事,今天看看这位。近日,深圳一位程序员张运来因选择“车居”生活引发广泛关注。他在深圳工作期间,连续四年没有租房,而是选择住在自己的汽车里。每到周五,他便驾车300公里返回阳江老家陪伴家人,周一再赶回深圳上班。平日里,他在公园公共卫生间简单洗漱,每晚停车费仅需6元,每天总花销约100元。张运来表示,这种生活方式让他三年多节省了近十万元。面对部分网友
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多