- 单调栈总结
qq_43344375
刷题总结数据结构算法数据结构算法leetcode
单调栈总结+Leetcode实例单调栈1.模型识别2.原理3.模板4.例题基础版1)LeetCode739.每日温度2)LeetCode496.下一个更大元素I3)LeetCode503.下一个更大元素II4)LeetCode901.股票价格跨度5)LeetCode1019.链表中的下一个更大节点5.例题提高版1)LeetCode84.柱状图中最大的矩形2)LeetCode42.接雨水3)Leet
- 文心大模型及百度大模型内容安全平台齐获信通院大模型安全认证
百度安全
百度安全
近日,文心大模型与百度大模型内容安全平台——红线大模型双双荣获中国信息通信研究院泰尔认证中心颁发的“大规模预训练模型(文本生成功能)安全认证证书”,且二者的认证级别皆“增强级”的最高级别。大规模预训练模型(文本生成功能)安全认证证书本次认证基于《电信和互联网大规模预训练模型安全评测指标和方法》(TLC073-2024),此标准由中国信息通信研究院牵头制定,旨在为大规模预训练模型提供安全评测的风险项
- NoSQL数据库的分布式存储优化
数据库管理艺术
nosql分布式数据库ai
NoSQL数据库的分布式存储优化关键词:NoSQL、分布式存储、数据分片、一致性哈希、CAP定理、读写优化、水平扩展摘要:本文深入探讨NoSQL数据库在分布式环境下的存储优化策略。我们将从基础概念出发,分析NoSQL数据库的架构特点,详细讲解分布式存储的核心算法和数学模型,并通过实际代码示例展示优化技术的实现。文章还将覆盖实际应用场景、工具推荐以及未来发展趋势,为读者提供全面的NoSQL分布式存储
- AIGC 领域中文心一言的技术稳定性评测
SuperAGI2025
AIGC文心一言ai
AIGC领域中文心一言的技术稳定性评测关键词:AIGC、文心一言、技术稳定性评测、语言模型、准确性摘要:本文旨在对AIGC领域中的文心一言进行技术稳定性评测。通过介绍评测的背景、核心概念,阐述相关算法原理和操作步骤,结合实际案例分析,探讨文心一言在不同场景下的稳定性表现,为读者全面了解文心一言的技术能力提供参考,同时展望其未来发展面临的趋势与挑战。背景介绍目的和范围我们这次评测的目的呢,就像是给文
- 机器学习路径规划中的 net 和 netlist 分别是什么?
勤奋的大熊猫
MachineLearning机器学习人工智能自动寻路
机器学习路径规划中的net是什么?引言正文net含义netlist含义引言当我们使用机器学习训练自己的模型来进行自动寻路时,通常,我们会遇到一个名为net的词语,这里我们将对这个单词的意思进行解释。正文net含义net:中文翻译为网络,在机器学习中其中文应该翻译为连线任务。通常在连线任务中我们需要将给定的两个端点连接起来。比如给定的端点为:self.netlist=[('mmi:out1','mm
- 3D建模公司的能力与技术
zhongqu_3dnest
3d数码相机3D建模公司vr制作公司虚拟现实
在数字化时代,3D建模公司扮演着越来越重要的角色。它们是专业从事三维建模设计服务的机构或团队,利用先进的三维建模软件和技术,为客户提供从概念设计到最终成品的全流程服务。这些服务广泛应用于建筑设计、工程规划、产品设计、动画制作等多个领域。3D建模公司通常由经验丰富的设计师、工程师和技术专家组成,他们能够根据客户需求,创造出高质量的三维模型和设计方案。众趣科技,作为3D建模领域的佼佼者,凭借先进的3D
- 探索响应式设计新境界:React Native Responsive Dimensions
姚婕妹
探索响应式设计新境界:ReactNativeResponsiveDimensionsreact-native-responsive-dimensionsResposivefontSize,heightandwidthforreact-nativecomponents,thatautomaticallyadjustsitselfbasedonscreen-sizeofthedevice.项目地址:h
- Mamba-YOLOv8深度解析:基于状态空间模型的下一代目标检测架构(含完整代码与实战部署)文末含资料链接!
博导ai君
深度学习教学-附源码YOLO目标检测架构
文章目录前言一、技术背景与动机1.1传统架构的局限性1.2Mamba的创新优势二、Mamba-YOLOv8架构详解2.1整体架构设计2.2核心模块:VSSblock2.3SS2D模块工作原理三、完整实现流程3.1环境配置3.2代码集成步骤3.3训练与微调四、性能分析与优化4.1精度提升策略4.2推理加速方案4.3硬件适配技巧五、实战案例:无人机航拍检测5.1数据集准备5.2模型训练与评估六、未来研
- 认识.net mvc 框架
NPCZ
mvc
ASP.NETMVC是微软推出的一个基于.NET框架的Web应用程序开发模式,它遵循**Model-View-Controller(模型-视图-控制器)**架构模式,将应用程序分为三个核心组件:1.Model(模型)负责处理数据逻辑和业务规则,通常对应数据库表或业务对象。2.View(视图)负责展示用户界面,通常是Razor视图文件(.cshtml)。3.Controller(控制器)负责处理请求
- Java 架构演进:从瀑布模型到敏捷开发的转变
向哆哆
Java入门到精通java架构敏捷流程
Java架构演进:从瀑布模型到敏捷开发的转变一、引言在软件开发领域,Java作为一种广泛使用的编程语言,其架构设计和开发方法随着时代不断演进。从传统的瀑布模型到如今主流的敏捷开发,这一转变不仅影响着开发流程,更深刻地改变了Java架构的设计理念和实践方式。本文将深入探讨Java架构在这两种开发模式下的特点、差异以及转变过程中涉及的关键技术和实践,结合详细代码实例进行阐述。二、瀑布模型下的Java架
- FastAPI MCP 简介及使用教程
清尘沐歌
fastapiMCP
原文详细链接:FastAPIMCP是什么?怎么使用?一文介绍简单来说,FastAPIMCP是一个零配置工具,它能够自动把你的FastAPI接口转换成符合模型上下文协议(ModelContextProtocol,简称MCP)的工具。这样,AI模型就能够直接调用你的API了。说白了,它就是一个桥梁,连接你的API和各种AI模型,让AI能够"看懂"并使用你的API。这么理解,你可以让Claude或GPT
- 大语言模型应用指南:谷歌 Gemini 简介
AI天才研究院
AI大模型企业级应用开发实战AI人工智能与大数据计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:谷歌Gemini简介关键词:大语言模型,Gemini,谷歌,人工智能,应用指南1.背景介绍近年来,人工智能领域取得了突破性进展,尤其是大语言模型(LargeLanguageModels,LLMs)的出现,彻底改变了我们与信息交互的方式。从最初的聊天机器人到如今的代码生成、文本创作等领域,LLMs展现出惊人的能力。谷歌作为科技巨头,一直走在人工智能研究的前沿。继BERT、LaMD
- 仿 Twitter 点赞爱心动画效果 其中用到 animation
hackchen
html前端css
大概的原理,准备一张雪碧图,通过hover改变雪碧图的X坐标,达到动画的效果HTML:CSS:.heart{width:100px;height:100px;position:absolute;left:50%;top:50%;transform:translate(-50%,-50%);background:url("
- 用于人形机器人强化学习运动的神经网络架构分析
1.引言:人形机器人运动强化学习中的架构探索人形机器人具备在多样化环境中自主运行的巨大潜力,有望缓解工厂劳动力短缺、协助居家养老以及探索新星球等问题。其拟人化的特性使其在执行类人操作任务(如运动和操纵)方面具有独特优势。深度强化学习(DRL)作为一种前景广阔的无模型方法,能够有效控制双足运动,实现复杂行为的自主学习,而无需显式动力学模型。1.1人形机器人运动强化学习的机遇与挑战尽管DRL取得了显著
- 【第三章:神经网络原理详解与Pytorch入门】01.神经网络算法理论详解与实践-(4)神经网络中的重要组件
第三章:神经网络原理详解与Pytorch入门第一部分:神经网络算法理论详解与实践第四节:神经网络中的重要组件内容:激活函数、loss函数、dropout、梯度消失与爆炸、过拟合与欠拟合神经网络的性能依赖于多个关键组件的合理设计与使用。理解这些组件有助于构建更加稳健且高效的模型。一、激活函数(ActivationFunction)【深度学习】关键技术-激活函数(ActivationFunctions
- 【机器学习|学习笔记】特征选择(Feature Selection)和特征提取(Feature Extraction)都是用于降维、提升模型性能和泛化能力的重要手段。
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记人工智能神经网络
【机器学习|学习笔记】特征选择(FeatureSelection)和特征提取(FeatureExtraction)都是用于降维、提升模型性能和泛化能力的重要手段。【机器学习|学习笔记】特征选择(FeatureSelection)和特征提取(FeatureExtraction)都是用于降维、提升模型性能和泛化能力的重要手段。文章目录【机器学习|学习笔记】特征选择(FeatureSelection)和
- paddleOCR模型的安装和使用
九日卯贝
paddleocr
paddleOCR仓库:https://github.com/PaddlePaddle/PaddleOCR?tab=readme-ov-file文档:https://paddlepaddle.github.io/PaddleOCR/main/quick_start.html#2-paddleocr环境安装python-mpipinstallpaddlepaddle-gpu==3.0.0b1-iht
- 长短期记忆(LSTM)网络模型
凌莫凡
lstm人工智能rnn深度学习神经网络
一、概述 长短期记忆(LongShort-TermMemory,LSTM)网络是一种特殊的循环神经网络(RNN),专门设计用于解决传统RNN在处理长序列数据时面临的梯度消失/爆炸问题,能够有效捕捉长距离依赖关系。其核心在于引入记忆细胞(CellState)和门控机制(GateMechanism),通过控制信息的流动来实现对长期信息的存储与遗忘。二、模型原理 LSTM由记忆细胞和三个门控单元(遗
- 文心4.5开源模型部署实践
skywalk8163
人工智能文心人工智能文心大模型开源大模型文心开源
文心4.5开源模型部署实践使用fastdeploy本地部署执行命令:python-mfastdeploy.entrypoints.openai.api_server\ --modelbaidu/ERNIE-4.5-21B-A3B-Paddle\ --port8180\ --metrics-port8181\ --engine-worker-queue-port8182\ --max-model-l
- Kimi Audio一个通用的音频基础模型处理各种任务如自动语音识别(ASR)、音频问答(AQA)、自动音频字幕(AAC)、语音情感识别(SER)、声音事件/场景分类(SEC/ASC)和端到端语音对话
skywalk8163
人工智能xcodeidekaggleKimiAudio
KimiAudio被设计为一个通用的音频基础模型,能够在一个统一的框架内处理各种音频处理任务。主要功能包括:通用功能:处理各种任务,如自动语音识别(ASR)、音频问答(AQA)、自动音频字幕(AAC)、语音情感识别(SER)、声音事件/场景分类(SEC/ASC)和端到端语音对话。最先进的性能:在众多音频基准测试中取得SOTA结果(见评估和技术报告)。大规模预训练:对超过1300万小时的各种音频数据
- AI里的Prompt到底是什么?——提示词
不知名产品露
AIGC
AIGC爆火以后,应运而生的Prompt到底是什么?为什么会有这个产物呢?拿大语言模型举例来说,自身的能力很强大,但也存在一定的弊端,比如输出的内容太空太泛、不是用户想要的答案、输出的内容格式不符合预期……正因为这些弊端的存在,进而催生了Prompt(提示词ArtificialIntelligencePrompt)。应用场景也比较多如:智能客服、数字人主播、智能写作助手、PPT制作等。一、定义Pr
- ART(Automatic Reasoning and Tool-use):自动推理与工具使用的革命性突破
引言在人工智能快速发展的今天,大语言模型(LLM)的能力边界正在不断被重新定义。ART(AutomaticReasoningandTool-use)技术作为一项革命性的突破,为AI系统提供了自动推理并使用外部工具的能力,这标志着我们正在迈向更加智能和实用的AI时代。什么是ART技术?ART是AutomaticReasoningandTool-use的缩写,它是一种让AI系统能够自动进行推理并调用外
- maven中settings.xml仓库配置
苏开印印印
aliyunmaven*阿里云公共仓库https://maven.aliyun.com/repository/publicrepo1centralHumanReadableNameforthisMirror.https://repo1.maven.org/maven2/repo2centralHumanReadableNameforthisMirror.https://repo2.maven.or
- 《深度学习》—— PyTorch的介绍及PyTorch的CPU版本安装
张小生180
人工智能深度学习pytorch
文章目录一、PyTorch的简单介绍二、pytorch的CPU版本安装三、torch、torchvision、torchaudio三个库的介绍一、PyTorch的简单介绍PyTorch是一个由FacebookAI实验室开发的深度学习框架,它基于Python,并提供了高效的GPU加速和灵活的模型定义能力。1.PyTorch的基本特点动态计算图:PyTorch采用动态计算图的方式,这意味着计算图是在运
- css 实现一个卡片
很菜很菜的人
cssjavascript前端
Document.box{width:300px;height:400px;}.code{height:100px;width:360px;margin-left:-30px;background-color:white;clip-path:inset(0000round0035%35%);margin-bottom:-30px;position:relative;}.inner{width:26
- OpenCV中超分辨率(Super Resolution)模块类cv::dnn_superres::DnnSuperResImpl
村北头的码农
OpenCVopencvdnn人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV中超分辨率(SuperResolution)模块的一个内部实现类。它属于dnn_superres模块,用于加载和运行基于深度学习的图像超分辨率模型。这个类是OpenCV中用于执行深度学习超分辨率推理的主要类。你可以用它来加载预训练的超分辨率模型(如ED
- Spring Boot + 本地部署大模型实现:优化与性能提升
代码老y
springboot后端java
在将大语言模型集成到SpringBoot应用中时,性能优化是一个关键环节。本地部署的大模型虽然提供了强大的功能,但也可能带来一些性能挑战,如响应时间较长、资源占用较高等问题。本文将介绍如何在SpringBoot应用中优化本地部署大模型的性能,确保应用的高效运行。一、性能优化策略(一)缓存机制缓存生成结果:对于一些常见的输入,可以将生成的结果缓存起来。当相同的输入再次出现时,直接返回缓存的结果,而不
- VLA模型
一介绍在机器人领域,视觉-语言-动作(VLA)模型的发展经历了显著的演变,这得益于计算机视觉和自然语言处理领域的进步。VLA模型代表了一类旨在处理多模态输入的模型,整合了来自视觉、语言和动作的信息。这些模型对于实现具身智能至关重要,使机器人能够理解物理世界并与之互动。以下是VLA模型发展的时间线:早期阶段:计算机视觉和自然语言处理的集成大约在2015年开始,随着视觉问答(VQA)系统的出现。这些系
- 高可扩展属性建模设计:架构师的全局思考与落地方案
nbsaas-boot
数据库
在复杂业务系统中,动态属性扩展始终是架构设计的核心难题之一。传统方案如宽表设计和EAV(实体-属性-值)模型分别在性能与扩展性上各有优势与劣势,但也都有明显局限。为了兼顾性能、扩展性、维护成本,需要引入更灵活的设计模式。本文将深入探讨除宽表和EAV以外的几种现代解决方案,并提供综合推荐。一、问题背景:属性扩展的基本矛盾属性扩展的根本矛盾是:字段的多样性&动态性↔结构化存储&高性能查询需求变动频繁↔
- 宽表设计(Wide Table) 与 子表 + 类型 + 属性表设计(EAV 模型或“属性表”模型)
nbsaas-boot
数据库
在软件系统设计中,属性扩展(尤其是面向动态业务字段的扩展)是一个常见问题。尤其在企业应用、CMS、电商平台等场景中,经常会遇到「某个对象可能会增加不同的字段」的需求,例如:商品新增自定义字段、用户增加扩展信息等。本文将讨论两种主流方案——宽表设计(WideTable)与子表+类型+属性表设计(EAV模型或“属性表”模型),并从可维护性、性能、适用场景等方面进行系统分析。一、方案一:宽表设计(Wid
- java解析APK
3213213333332132
javaapklinux解析APK
解析apk有两种方法
1、结合安卓提供apktool工具,用java执行cmd解析命令获取apk信息
2、利用相关jar包里的集成方法解析apk
这里只给出第二种方法,因为第一种方法在linux服务器下会出现不在控制范围之内的结果。
public class ApkUtil
{
/**
* 日志对象
*/
private static Logger
- nginx自定义ip访问N种方法
ronin47
nginx 禁止ip访问
因业务需要,禁止一部分内网访问接口, 由于前端架了F5,直接用deny或allow是不行的,这是因为直接获取的前端F5的地址。
所以开始思考有哪些主案可以实现这样的需求,目前可实施的是三种:
一:把ip段放在redis里,写一段lua
二:利用geo传递变量,写一段
- mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性
dcj3sjt126com
mysql
timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下:
1.
CURRENT_TIMESTAMP
当要向数据库执行insert操作时,如果有个timestamp字段属性设为
CURRENT_TIMESTAMP,则无论这
- struts2+spring+hibernate分页显示
171815164
Hibernate
分页显示一直是web开发中一大烦琐的难题,传统的网页设计只在一个JSP或者ASP页面中书写所有关于数据库操作的代码,那样做分页可能简单一点,但当把网站分层开发后,分页就比较困难了,下面是我做Spring+Hibernate+Struts2项目时设计的分页代码,与大家分享交流。
1、DAO层接口的设计,在MemberDao接口中定义了如下两个方法:
public in
- 构建自己的Wrapper应用
g21121
rap
我们已经了解Wrapper的目录结构,下面可是正式利用Wrapper来包装我们自己的应用,这里假设Wrapper的安装目录为:/usr/local/wrapper。
首先,创建项目应用
&nb
- [简单]工作记录_多线程相关
53873039oycg
多线程
最近遇到多线程的问题,原来使用异步请求多个接口(n*3次请求) 方案一 使用多线程一次返回数据,最开始是使用5个线程,一个线程顺序请求3个接口,超时终止返回 缺点 测试发现必须3个接
- 调试jdk中的源码,查看jdk局部变量
程序员是怎么炼成的
jdk 源码
转自:http://www.douban.com/note/211369821/
学习jdk源码时使用--
学习java最好的办法就是看jdk源代码,面对浩瀚的jdk(光源码就有40M多,比一个大型网站的源码都多)从何入手呢,要是能单步调试跟进到jdk源码里并且能查看其中的局部变量最好了。
可惜的是sun提供的jdk并不能查看运行中的局部变量
- Oracle RAC Failover 详解
aijuans
oracle
Oracle RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会影响用户的使用,连接到故障节点的用户会被自动转移到健康节点,从用户感受而言, 是感觉不到这种切换。
Oracle 10g RAC 的Failover 可以分为3种:
1. Client-Si
- form表单提交数据编码方式及tomcat的接受编码方式
antonyup_2006
JavaScripttomcat浏览器互联网servlet
原帖地址:http://www.iteye.com/topic/266705
form有2中方法把数据提交给服务器,get和post,分别说下吧。
(一)get提交
1.首先说下客户端(浏览器)的form表单用get方法是如何将数据编码后提交给服务器端的吧。
对于get方法来说,都是把数据串联在请求的url后面作为参数,如:http://localhost:
- JS初学者必知的基础
百合不是茶
js函数js入门基础
JavaScript是网页的交互语言,实现网页的各种效果,
JavaScript 是世界上最流行的脚本语言。
JavaScript 是属于 web 的语言,它适用于 PC、笔记本电脑、平板电脑和移动电话。
JavaScript 被设计为向 HTML 页面增加交互性。
许多 HTML 开发者都不是程序员,但是 JavaScript 却拥有非常简单的语法。几乎每个人都有能力将小的
- iBatis的分页分析与详解
bijian1013
javaibatis
分页是操作数据库型系统常遇到的问题。分页实现方法很多,但效率的差异就很大了。iBatis是通过什么方式来实现这个分页的了。查看它的实现部分,发现返回的PaginatedList实际上是个接口,实现这个接口的是PaginatedDataList类的对象,查看PaginatedDataList类发现,每次翻页的时候最
- 精通Oracle10编程SQL(15)使用对象类型
bijian1013
oracle数据库plsql
/*
*使用对象类型
*/
--建立和使用简单对象类型
--对象类型包括对象类型规范和对象类型体两部分。
--建立和使用不包含任何方法的对象类型
CREATE OR REPLACE TYPE person_typ1 as OBJECT(
name varchar2(10),gender varchar2(4),birthdate date
);
drop type p
- 【Linux命令二】文本处理命令awk
bit1129
linux命令
awk是Linux用来进行文本处理的命令,在日常工作中,广泛应用于日志分析。awk是一门解释型编程语言,包含变量,数组,循环控制结构,条件控制结构等。它的语法采用类C语言的语法。
awk命令用来做什么?
1.awk适用于具有一定结构的文本行,对其中的列进行提取信息
2.awk可以把当前正在处理的文本行提交给Linux的其它命令处理,然后把直接结构返回给awk
3.awk实际工
- JAVA(ssh2框架)+Flex实现权限控制方案分析
白糖_
java
目前项目使用的是Struts2+Hibernate+Spring的架构模式,目前已经有一套针对SSH2的权限系统,运行良好。但是项目有了新需求:在目前系统的基础上使用Flex逐步取代JSP,在取代JSP过程中可能存在Flex与JSP并存的情况,所以权限系统需要进行修改。
【SSH2权限系统的实现机制】
权限控制分为页面和后台两块:不同类型用户的帐号分配的访问权限是不同的,用户使
- angular.forEach
boyitech
AngularJSAngularJS APIangular.forEach
angular.forEach 描述: 循环对obj对象的每个元素调用iterator, obj对象可以是一个Object或一个Array. Iterator函数调用方法: iterator(value, key, obj), 其中obj是被迭代对象,key是obj的property key或者是数组的index,value就是相应的值啦. (此函数不能够迭代继承的属性.)
- java-谷歌面试题-给定一个排序数组,如何构造一个二叉排序树
bylijinnan
二叉排序树
import java.util.LinkedList;
public class CreateBSTfromSortedArray {
/**
* 题目:给定一个排序数组,如何构造一个二叉排序树
* 递归
*/
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4,
- action执行2次
Chen.H
JavaScriptjspXHTMLcssWebwork
xwork 写道 <action name="userTypeAction"
class="com.ekangcount.website.system.view.action.UserTypeAction">
<result name="ssss" type="dispatcher">
- [时空与能量]逆转时空需要消耗大量能源
comsci
能源
无论如何,人类始终都想摆脱时间和空间的限制....但是受到质量与能量关系的限制,我们人类在目前和今后很长一段时间内,都无法获得大量廉价的能源来进行时空跨越.....
在进行时空穿梭的实验中,消耗超大规模的能源是必然
- oracle的正则表达式(regular expression)详细介绍
daizj
oracle正则表达式
正则表达式是很多编程语言中都有的。可惜oracle8i、oracle9i中一直迟迟不肯加入,好在oracle10g中终于增加了期盼已久的正则表达式功能。你可以在oracle10g中使用正则表达式肆意地匹配你想匹配的任何字符串了。
正则表达式中常用到的元数据(metacharacter)如下:
^ 匹配字符串的开头位置。
$ 匹配支付传的结尾位置。
*
- 报表工具与报表性能的关系
datamachine
报表工具birt报表性能润乾报表
在选择报表工具时,性能一直是用户关心的指标,但是,报表工具的性能和整个报表系统的性能有多大关系呢?
要回答这个问题,首先要分析一下报表的处理过程包含哪些环节,哪些环节容易出现性能瓶颈,如何优化这些环节。
一、报表处理的一般过程分析
1、用户选择报表输入参数后,报表引擎会根据报表模板和输入参数来解析报表,并将数据计算和读取请求以SQL的方式发送给数据库。
2、
- 初一上学期难记忆单词背诵第一课
dcj3sjt126com
wordenglish
what 什么
your 你
name 名字
my 我的
am 是
one 一
two 二
three 三
four 四
five 五
class 班级,课
six 六
seven 七
eight 八
nince 九
ten 十
zero 零
how 怎样
old 老的
eleven 十一
twelve 十二
thirteen
- 我学过和准备学的各种技术
dcj3sjt126com
技术
语言VB https://msdn.microsoft.com/zh-cn/library/2x7h1hfk.aspxJava http://docs.oracle.com/javase/8/C# https://msdn.microsoft.com/library/vstudioPHP http://php.net/manual/en/Html
- struts2中token防止重复提交表单
蕃薯耀
重复提交表单struts2中token
struts2中token防止重复提交表单
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月12日 11:52:32 星期日
ht
- 线性查找二维数组
hao3100590
二维数组
1.算法描述
有序(行有序,列有序,且每行从左至右递增,列从上至下递增)二维数组查找,要求复杂度O(n)
2.使用到的相关知识:
结构体定义和使用,二维数组传递(http://blog.csdn.net/yzhhmhm/article/details/2045816)
3.使用数组名传递
这个的不便之处很明显,一旦确定就是不能设置列值
//使
- spring security 3中推荐使用BCrypt算法加密密码
jackyrong
Spring Security
spring security 3中推荐使用BCrypt算法加密密码了,以前使用的是md5,
Md5PasswordEncoder 和 ShaPasswordEncoder,现在不推荐了,推荐用bcrpt
Bcrpt中的salt可以是随机的,比如:
int i = 0;
while (i < 10) {
String password = "1234
- 学习编程并不难,做到以下几点即可!
lampcy
javahtml编程语言
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- 架构师之mysql----------------用group+inner join,left join ,right join 查重复数据(替代in)
nannan408
right join
1.前言。
如题。
2.代码
(1)单表查重复数据,根据a分组
SELECT m.a,m.b, INNER JOIN (select a,b,COUNT(*) AS rank FROM test.`A` A GROUP BY a HAVING rank>1 )k ON m.a=k.a
(2)多表查询 ,
使用改为le
- jQuery选择器小结 VS 节点查找(附css的一些东西)
Everyday都不同
jquerycssname选择器追加元素查找节点
最近做前端页面,频繁用到一些jQuery的选择器,所以特意来总结一下:
测试页面:
<html>
<head>
<script src="jquery-1.7.2.min.js"></script>
<script>
/*$(function() {
$(documen
- 关于EXT
tntxia
ext
ExtJS是一个很不错的Ajax框架,可以用来开发带有华丽外观的富客户端应用,使得我们的b/s应用更加具有活力及生命力。ExtJS是一个用 javascript编写,与后台技术无关的前端ajax框架。因此,可以把ExtJS用在.Net、Java、Php等各种开发语言开发的应用中。
ExtJs最开始基于YUI技术,由开发人员Jack
- 一个MIT计算机博士对数学的思考
xjnine
Math
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。为什么要深入数学的世界?作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appe