mahout是机器学习的一个工具,里面封装了大量的机器学习的算法。
算法类 |
算法名 |
中文名 |
分类算法 |
Logistic Regression |
逻辑回归 |
Bayesian |
贝叶斯 |
|
SVM |
支持向量机 |
|
Perceptron |
感知器算法 |
|
Neural Network |
神经网络 |
|
Random Forests |
随机森林 |
|
Restricted Boltzmann Machines |
有限波尔兹曼机 |
|
聚类算法 |
Canopy Clustering |
Canopy聚类 |
K-means Clustering |
K均值算法 |
|
Fuzzy K-means |
模糊K均值 |
|
Expectation Maximization |
EM聚类(期望最大化聚类) |
|
Mean Shift Clustering |
均值漂移聚类 |
|
Hierarchical Clustering |
层次聚类 |
|
Dirichlet Process Clustering |
狄里克雷过程聚类 |
|
Latent Dirichlet Allocation |
LDA聚类 |
|
Spectral Clustering |
谱聚类 |
|
关联规则挖掘 |
Parallel FP Growth Algorithm |
并行FP Growth算法 |
回归 |
Locally Weighted Linear Regression |
局部加权线性回归 |
降维/维约简 |
Singular Value Decomposition |
奇异值分解 |
Principal Components Analysis |
主成分分析 |
|
Independent Component Analysis |
独立成分分析 |
|
Gaussian Discriminative Analysis |
高斯判别分析 |
|
进化算法 |
并行化了Watchmaker框架 |
|
推荐/协同过滤 |
Non-distributed recommenders |
Taste(UserCF, ItemCF, SlopeOne) |
Distributed Recommenders |
ItemCF |
|
向量相似度计算 |
RowSimilarityJob |
计算列间相似度 |
VectorDistanceJob |
计算向量间距离 |
|
非Map-Reduce算法 |
Hidden Markov Models |
隐马尔科夫模型 |
集合方法扩展 |
Collections |
扩展了java的Collections类 |
package mahout; import java.io.File; import java.util.List; import org.apache.mahout.cf.taste.impl.model.file.FileDataModel; import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood; import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender; import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity; import org.apache.mahout.cf.taste.model.DataModel; import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood; import org.apache.mahout.cf.taste.recommender.RecommendedItem; import org.apache.mahout.cf.taste.recommender.Recommender; import org.apache.mahout.cf.taste.similarity.UserSimilarity; public class UserRecommer { public static void main(String[] args) throws Exception { DataModel model = new FileDataModel(new File("xxx/intro.csv")); // 皮尔逊相似度算法。其他的还有好多相似度算法 UserSimilarity similarity = new PearsonCorrelationSimilarity(model); UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model); // 生成推荐系统 Recommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity); // 为用户1推荐物品1 List<RecommendedItem> recommendations = recommender.recommend(1, 1); for (RecommendedItem recommendation : recommendations) { System.out.println(recommendation); } } }结果如下:RecommendedItem[item:104, value:4.257081]
intro.csv文件内容: 1,101,5.0 1,102,3.0 1,103,2.5 2,101,2.0 2,102,2.5 2,103,5.0 2,104,2.0 3,101,2.5 3,104,4.0 3,105,4.5 3,107,5.0 4,101,5.0 4,103,3.0 4,104,4.5 4,106,4.0 5,101,4.0 5,102,3.0 5,103,2.0 5,104,4.0 5,105,3.5 5,106,4.0