本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
/**
* 获取文本的所有分词结果, 对比不同分词器结果
* @author 杨尚川
*/
public
interface
WordSegmenter {
/**
* 获取文本的所有分词结果
* @param text 文本
* @return 所有的分词结果,去除重复
*/
default
public
Set<String> seg(String text) {
return
segMore(text).values().stream().collect(Collectors.toSet());
}
/**
* 获取文本的所有分词结果
* @param text 文本
* @return 所有的分词结果,KEY 为分词器模式,VALUE 为分词器结果
*/
public
Map<String, String> segMore(String text);
}
|
从上面的定义我们知道,在Java中,同样的方法名称和参数,但是返回值不同,这种情况不可以使用重载。
这两个方法的区别在于返回值,每一个分词器都可能有多种分词模式,每种模式的分词结果都可能不相同,第一个方法忽略分词器模式,返回所有模式的所有不重复分词结果,第二个方法返回每一种分词器模式及其对应的分词结果。
在这里,需要注意的是我们使用了Java8中的新特性默认方法,并使用stream把一个map的value转换为不重复的集合。
下面我们利用这11大分词器来实现这个接口:
1、word分词器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
@Override
public
Map<String, String> segMore(String text) {
Map<String, String> map =
new
HashMap<>();
for
(SegmentationAlgorithm segmentationAlgorithm : SegmentationAlgorithm.values()){
map.put(segmentationAlgorithm.getDes(), seg(text, segmentationAlgorithm));
}
return
map;
}
private
static
String seg(String text, SegmentationAlgorithm segmentationAlgorithm) {
StringBuilder result =
new
StringBuilder();
for
(Word word : WordSegmenter.segWithStopWords(text, segmentationAlgorithm)){
result.append(word.getText()).append(
" "
);
}
return
result.toString();
}
|
2、Ansj分词器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
@Override
public
Map<String, String> segMore(String text) {
Map<String, String> map =
new
HashMap<>();
StringBuilder result =
new
StringBuilder();
for
(Term term : BaseAnalysis.parse(text)){
result.append(term.getName()).append(
" "
);
}
map.put(
"BaseAnalysis"
, result.toString());
result.setLength(
0
);
for
(Term term : ToAnalysis.parse(text)){
result.append(term.getName()).append(
" "
);
}
map.put(
"ToAnalysis"
, result.toString());
result.setLength(
0
);
for
(Term term : NlpAnalysis.parse(text)){
result.append(term.getName()).append(
" "
);
}
map.put(
"NlpAnalysis"
, result.toString());
result.setLength(
0
);
for
(Term term : IndexAnalysis.parse(text)){
result.append(term.getName()).append(
" "
);
}
map.put(
"IndexAnalysis"
, result.toString());
return
map;
}
|
3、Stanford分词器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
private
static
final
StanfordCoreNLP CTB =
new
StanfordCoreNLP(
"StanfordCoreNLP-chinese-ctb"
);
private
static
final
StanfordCoreNLP PKU =
new
StanfordCoreNLP(
"StanfordCoreNLP-chinese-pku"
);
private
static
final
PrintStream NULL_PRINT_STREAM =
new
PrintStream(
new
NullOutputStream(),
false
);
public
Map<String, String> segMore(String text) {
Map<String, String> map =
new
HashMap<>();
map.put(
"Stanford Beijing University segmentation"
, seg(PKU, text));
map.put(
"Stanford Chinese Treebank segmentation"
, seg(CTB, text));
return
map;
}
private
static
String seg(StanfordCoreNLP stanfordCoreNLP, String text){
PrintStream err = System.err;
System.setErr(NULL_PRINT_STREAM);
Annotation document =
new
Annotation(text);
stanfordCoreNLP.annotate(document);
List<CoreMap> sentences = document.get(CoreAnnotations.SentencesAnnotation.
class
);
StringBuilder result =
new
StringBuilder();
for
(CoreMap sentence: sentences) {
for
(CoreLabel token: sentence.get(CoreAnnotations.TokensAnnotation.
class
)) {
String word = token.get(CoreAnnotations.TextAnnotation.
class
);;
result.append(word).append(
" "
);
}
}
System.setErr(err);
return
result.toString();
}
|
4、FudanNLP分词器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
private
static
CWSTagger tagger =
null
;
static
{
try
{
tagger =
new
CWSTagger(
"lib/fudannlp_seg.m"
);
tagger.setEnFilter(
true
);
}
catch
(Exception e){
e.printStackTrace();
}
}
@Override
public
Map<String, String> segMore(String text) {
Map<String, String> map =
new
HashMap<>();
map.put(
"FudanNLP"
, tagger.tag(text));
return
map;
}
|
5、Jieba分词器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
private
static
final
JiebaSegmenter JIEBA_SEGMENTER =
new
JiebaSegmenter();
@Override
public
Map<String, String> segMore(String text) {
Map<String, String> map =
new
HashMap<>();
map.put(
"INDEX"
, seg(text, SegMode.INDEX));
map.put(
"SEARCH"
, seg(text, SegMode.SEARCH));
return
map;
}
private
static
String seg(String text, SegMode segMode) {
StringBuilder result =
new
StringBuilder();
for
(SegToken token : JIEBA_SEGMENTER.process(text, segMode)){
result.append(token.word.getToken()).append(
" "
);
}
return
result.toString();
}
|
6、Jcseg分词器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
private
static
final
JcsegTaskConfig CONFIG =
new
JcsegTaskConfig();
private
static
final
ADictionary DIC = DictionaryFactory.createDefaultDictionary(CONFIG);
static
{
CONFIG.setLoadCJKSyn(
false
);
CONFIG.setLoadCJKPinyin(
false
);
}
@Override
public
Map<String, String> segMore(String text) {
Map<String, String> map =
new
HashMap<>();
map.put(
"复杂模式"
, segText(text, JcsegTaskConfig.COMPLEX_MODE));
map.put(
"简易模式"
, segText(text, JcsegTaskConfig.SIMPLE_MODE));
return
map;
}
private
String segText(String text,
int
segMode) {
StringBuilder result =
new
StringBuilder();
try
{
ISegment seg = SegmentFactory.createJcseg(segMode,
new
Object[]{
new
StringReader(text), CONFIG, DIC});
IWord word =
null
;
while
((word=seg.next())!=
null
) {
result.append(word.getValue()).append(
" "
);
}
}
catch
(Exception ex) {
throw
new
RuntimeException(ex);
}
return
result.toString();
}
|
7、MMSeg4j分词器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
private
static
final
Dictionary DIC = Dictionary.getInstance();
private
static
final
SimpleSeg SIMPLE_SEG =
new
SimpleSeg(DIC);
private
static
final
ComplexSeg COMPLEX_SEG =
new
ComplexSeg(DIC);
private
static
final
MaxWordSeg MAX_WORD_SEG =
new
MaxWordSeg(DIC);
@Override
public
Map<String, String> segMore(String text) {
Map<String, String> map =
new
HashMap<>();
map.put(SIMPLE_SEG.getClass().getSimpleName(), segText(text, SIMPLE_SEG));
map.put(COMPLEX_SEG.getClass().getSimpleName(), segText(text, COMPLEX_SEG));
map.put(MAX_WORD_SEG.getClass().getSimpleName(), segText(text, MAX_WORD_SEG));
return
map;
}
private
String segText(String text, Seg seg) {
StringBuilder result =
new
StringBuilder();
MMSeg mmSeg =
new
MMSeg(
new
StringReader(text), seg);
try
{
Word word =
null
;
while
((word=mmSeg.next())!=
null
) {
result.append(word.getString()).append(
" "
);
}
}
catch
(IOException ex) {
throw
new
RuntimeException(ex);
}
return
result.toString();
}
|
8、IKAnalyzer分词器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
@Override
public
Map<String, String> segMore(String text) {
Map<String, String> map =
new
HashMap<>();
map.put(
"智能切分"
, segText(text,
true
));
map.put(
"细粒度切分"
, segText(text,
false
));
return
map;
}
private
String segText(String text,
boolean
useSmart) {
StringBuilder result =
new
StringBuilder();
IKSegmenter ik =
new
IKSegmenter(
new
StringReader(text), useSmart);
try
{
Lexeme word =
null
;
while
((word=ik.next())!=
null
) {
result.append(word.getLexemeText()).append(
" "
);
}
}
catch
(IOException ex) {
throw
new
RuntimeException(ex);
}
return
result.toString();
}
|
9、Paoding分词器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
private
static
final
PaodingAnalyzer ANALYZER =
new
PaodingAnalyzer();
@Override
public
Map<String, String> segMore(String text) {
Map<String, String> map =
new
HashMap<>();
map.put(
"MOST_WORDS_MODE"
, seg(text, PaodingAnalyzer.MOST_WORDS_MODE));
map.put(
"MAX_WORD_LENGTH_MODE"
, seg(text, PaodingAnalyzer.MAX_WORD_LENGTH_MODE));
return
map;
}
private
static
String seg(String text,
int
mode){
ANALYZER.setMode(mode);
StringBuilder result =
new
StringBuilder();
try
{
Token reusableToken =
new
Token();
TokenStream stream = ANALYZER.tokenStream(
""
,
new
StringReader(text));
Token token =
null
;
while
((token = stream.next(reusableToken)) !=
null
){
result.append(token.term()).append(
" "
);
}
}
catch
(Exception ex) {
throw
new
RuntimeException(ex);
}
return
result.toString();
}
|
10、smartcn分词器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
private
static
final
SmartChineseAnalyzer SMART_CHINESE_ANALYZER =
new
SmartChineseAnalyzer();
@Override
public
Map<String, String> segMore(String text) {
Map<String, String> map =
new
HashMap<>();
map.put(
"smartcn"
, segText(text));
return
map;
}
private
static
String segText(String text) {
StringBuilder result =
new
StringBuilder();
try
{
TokenStream tokenStream = SMART_CHINESE_ANALYZER.tokenStream(
"text"
,
new
StringReader(text));
tokenStream.reset();
while
(tokenStream.incrementToken()){
CharTermAttribute charTermAttribute = tokenStream.getAttribute(CharTermAttribute.
class
);
result.append(charTermAttribute.toString()).append(
" "
);
}
tokenStream.close();
}
catch
(Exception e){
e.printStackTrace();
}
return
result.toString();
}
|
11、HanLP分词器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
private
static
final
Segment N_SHORT_SEGMENT =
new
NShortSegment().enableCustomDictionary(
false
).enablePlaceRecognize(
true
).enableOrganizationRecognize(
true
);
private
static
final
Segment DIJKSTRA_SEGMENT =
new
DijkstraSegment().enableCustomDictionary(
false
).enablePlaceRecognize(
true
).enableOrganizationRecognize(
true
);
@Override
public
Map<String, String> segMore(String text) {
Map<String, String> map =
new
HashMap<>();
map.put(
"标准分词"
, standard(text));
map.put(
"NLP分词"
, nlp(text));
map.put(
"索引分词"
, index(text));
map.put(
"N-最短路径分词"
, nShort(text));
map.put(
"最短路径分词"
, shortest(text));
map.put(
"极速词典分词"
, speed(text));
return
map;
}
private
static
String standard(String text) {
StringBuilder result =
new
StringBuilder();
StandardTokenizer.segment(text).forEach(term->result.append(term.word).append(
" "
));
return
result.toString();
}
private
static
String nlp(String text) {
StringBuilder result =
new
StringBuilder();
NLPTokenizer.segment(text).forEach(term->result.append(term.word).append(
" "
));
return
result.toString();
}
private
static
String index(String text) {
StringBuilder result =
new
StringBuilder();
IndexTokenizer.segment(text).forEach(term->result.append(term.word).append(
" "
));
return
result.toString();
}
private
static
String speed(String text) {
StringBuilder result =
new
StringBuilder();
SpeedTokenizer.segment(text).forEach(term->result.append(term.word).append(
" "
));
return
result.toString();
}
private
static
String nShort(String text) {
StringBuilder result =
new
StringBuilder();
N_SHORT_SEGMENT.seg(text).forEach(term->result.append(term.word).append(
" "
));
return
result.toString();
}
private
static
String shortest(String text) {
StringBuilder result =
new
StringBuilder();
DIJKSTRA_SEGMENT.seg(text).forEach(term->result.append(term.word).append(
" "
));
return
result.toString();
}
|
现在我们已经实现了本文的第一个目的:学会使用11大Java开源中文分词器。
最后我们来实现本文的第二个目的:对比分析11大Java开源中文分词器的分词效果,程序如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
public
static
Map<String, Set<String>> contrast(String text){
Map<String, Set<String>> map =
new
LinkedHashMap<>();
map.put(
"word分词器"
,
new
WordEvaluation().seg(text));
map.put(
"Stanford分词器"
,
new
StanfordEvaluation().seg(text));
map.put(
"Ansj分词器"
,
new
AnsjEvaluation().seg(text));
map.put(
"HanLP分词器"
,
new
HanLPEvaluation().seg(text));
map.put(
"FudanNLP分词器"
,
new
FudanNLPEvaluation().seg(text));
map.put(
"Jieba分词器"
,
new
JiebaEvaluation().seg(text));
map.put(
"Jcseg分词器"
,
new
JcsegEvaluation().seg(text));
map.put(
"MMSeg4j分词器"
,
new
MMSeg4jEvaluation().seg(text));
map.put(
"IKAnalyzer分词器"
,
new
IKAnalyzerEvaluation().seg(text));
map.put(
"smartcn分词器"
,
new
SmartCNEvaluation().seg(text));
return
map;
}
public
static
Map<String, Map<String, String>> contrastMore(String text){
Map<String, Map<String, String>> map =
new
LinkedHashMap<>();
map.put(
"word分词器"
,
new
WordEvaluation().segMore(text));
map.put(
"Stanford分词器"
,
new
StanfordEvaluation().segMore(text));
map.put(
"Ansj分词器"
,
new
AnsjEvaluation().segMore(text));
map.put(
"HanLP分词器"
,
new
HanLPEvaluation().segMore(text));
map.put(
"FudanNLP分词器"
,
new
FudanNLPEvaluation().segMore(text));
map.put(
"Jieba分词器"
,
new
JiebaEvaluation().segMore(text));
map.put(
"Jcseg分词器"
,
new
JcsegEvaluation().segMore(text));
map.put(
"MMSeg4j分词器"
,
new
MMSeg4jEvaluation().segMore(text));
map.put(
"IKAnalyzer分词器"
,
new
IKAnalyzerEvaluation().segMore(text));
map.put(
"smartcn分词器"
,
new
SmartCNEvaluation().segMore(text));
return
map;
}
public
static
void
show(Map<String, Set<String>> map){
map.keySet().forEach(k -> {
System.out.println(k +
" 的分词结果:"
);
AtomicInteger i =
new
AtomicInteger();
map.get(k).forEach(v -> {
System.out.println(
"\t"
+ i.incrementAndGet() +
" 、"
+ v);
});
});
}
public
static
void
showMore(Map<String, Map<String, String>> map){
map.keySet().forEach(k->{
System.out.println(k +
" 的分词结果:"
);
AtomicInteger i =
new
AtomicInteger();
map.get(k).keySet().forEach(a -> {
System.out.println(
"\t"
+ i.incrementAndGet()+
" 、【"
+ a +
"】\t"
+ map.get(k).get(a));
});
});
}
public
static
void
main(String[] args) {
show(contrast(
"我爱楚离陌"
));
showMore(contrastMore(
"我爱楚离陌"
));
}
|
运行结果如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
********************************************
word分词器 的分词结果:
1
、我 爱 楚离陌
Stanford分词器 的分词结果:
1
、我 爱 楚 离陌
2
、我 爱 楚离陌
Ansj分词器 的分词结果:
1
、我 爱 楚离 陌
2
、我 爱 楚 离 陌
HanLP分词器 的分词结果:
1
、我 爱 楚 离 陌
smartcn分词器 的分词结果:
1
、我 爱 楚 离 陌
FudanNLP分词器 的分词结果:
1
、我 爱楚离陌
Jieba分词器 的分词结果:
1
、我爱楚 离 陌
Jcseg分词器 的分词结果:
1
、我 爱 楚 离 陌
MMSeg4j分词器 的分词结果:
1
、我爱 楚 离 陌
IKAnalyzer分词器 的分词结果:
1
、我 爱 楚 离 陌
********************************************
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
********************************************
word分词器 的分词结果:
1
、【全切分算法】 我 爱 楚离陌
2
、【双向最大最小匹配算法】 我 爱 楚离陌
3
、【正向最大匹配算法】 我 爱 楚离陌
4
、【双向最大匹配算法】 我 爱 楚离陌
5
、【逆向最大匹配算法】 我 爱 楚离陌
6
、【正向最小匹配算法】 我 爱 楚离陌
7
、【双向最小匹配算法】 我 爱 楚离陌
8
、【逆向最小匹配算法】 我 爱 楚离陌
Stanford分词器 的分词结果:
1
、【Stanford Chinese Treebank segmentation】 我 爱 楚离陌
2
、【Stanford Beijing University segmentation】 我 爱 楚 离陌
|