使用Kafka的High Level Consumer

为什么使用High Level Consumer

  • 在某些应用场景,我们希望通过多线程读取消息,而我们并不关心从Kafka消费消息的顺序,我们仅仅关心数据能被消费就行。High Level 就是用于抽象这类消费动作的。

  • 消息消费已Consumer Group为单位,每个Consumer Group中可以有多个consumer,每个consumer是一个线程,topic的每个partition同时只能被某一个consumer读取,Consumer Group对应的每个partition都有一个最新的offset的值,存储在zookeeper上的。所以不会出现重复消费的情况。

设计High Level Consumer

High Level Consumer 可以并且应该被使用在多线程的环境,线程模型中线程的数量(也代表group中consumer的数量)和topic的partition数量有关,下面列举一些规则:

  1. 当提供的线程数量多于partition的数量,则部分线程将不会接收到消息;
  2. 当提供的线程数量少于partition的数量,则部分线程将从多个partition接收消息;
  3. 当某个线程从多个partition接收消息时,不保证接收消息的顺序;可能出现从partition3接收5条消息,从partition4接收6条消息,接着又从partition3接收10条消息;
  4. 当添加更多线程时,会引起kafka做re-balance, 可能改变partition和线程的对应关系。

代码示例

ConsumerGroupExample

package com.test.groups;

import kafka.consumer.ConsumerConfig;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class ConsumerGroupExample {
    private final ConsumerConnector consumer;
    private final String topic;
    private  ExecutorService executor;

    public ConsumerGroupExample(String a_zookeeper, String a_groupId, String a_topic) {
        consumer = kafka.consumer.Consumer.createJavaConsumerConnector(
                createConsumerConfig(a_zookeeper, a_groupId));
        this.topic = a_topic;
    }

    public void shutdown() {
        if (consumer != null) consumer.shutdown();
        if (executor != null) executor.shutdown();
    }

    public void run(int a_numThreads) {
        Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
        topicCountMap.put(topic, new Integer(a_numThreads));
        Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
        List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic);

        // now launch all the threads
        //
        executor = Executors.newFixedThreadPool(a_numThreads);

        // now create an object to consume the messages
        //
        int threadNumber = 0;
        for (final KafkaStream stream : streams) {
            executor.submit(new ConsumerTest(stream, threadNumber));
            threadNumber++;
        }
    }

    private static ConsumerConfig createConsumerConfig(String a_zookeeper, String a_groupId) {
        Properties props = new Properties();
        props.put("zookeeper.connect", a_zookeeper);
        props.put("group.id", a_groupId);
        props.put("zookeeper.session.timeout.ms", "400");
        props.put("zookeeper.sync.time.ms", "200");
        props.put("auto.commit.interval.ms", "1000");

        return new ConsumerConfig(props);
    }

    public static void main(String[] args) {
        String zooKeeper = args[0];
        String groupId = args[1];
        String topic = args[2];
        int threads = Integer.parseInt(args[3]);

        ConsumerGroupExample example = new ConsumerGroupExample(zooKeeper, groupId, topic);
        example.run(threads);

        try {
            Thread.sleep(10000);
        } catch (InterruptedException ie) {

        }
        example.shutdown();
    }
}

ConsumerTest

package com.test.groups;

import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;

public class ConsumerTest implements Runnable {
    private KafkaStream m_stream;
    private int m_threadNumber;

    public ConsumerTest(KafkaStream a_stream, int a_threadNumber) {
        m_threadNumber = a_threadNumber;
        m_stream = a_stream;
    }

    public void run() {
        ConsumerIterator<byte[], byte[]> it = m_stream.iterator();
        while (it.hasNext())
            System.out.println("Thread " + m_threadNumber + ": " + new String(it.next().message()));
        System.out.println("Shutting down Thread: " + m_threadNumber);
    }
}

你可能感兴趣的:(kafka)