vector的一个构造函数和assign、insert提供了两个函数版本
1.count
2.迭代器范围
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_initialize_aux(__first, __last, _Integral());
根据是否整形来分派函数,是整形则不是迭代器,否则认为是迭代器
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_VECTOR_H
#define __SGI_STL_INTERNAL_VECTOR_H
#include <concept_checks.h>
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
// The vector base class serves two purposes. First, its constructor
// and destructor allocate (but don't initialize) storage. This makes
// exception safety easier. Second, the base class encapsulates all of
// the differences between SGI-style allocators and standard-conforming
// allocators.
/*vector base class有两个目的:
** -它的构造和析构函数分配但不初始化内存,这使异常安全更容易
** -封装了所有SGI风格和C++标准之间的allocator的差异
*/
#ifdef __STL_USE_STD_ALLOCATORS
// Base class for ordinary allocators.
template <class _Tp, class _Allocator, bool _IsStatic>
class _Vector_alloc_base {
public:
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return _M_data_allocator; }
_Vector_alloc_base(const allocator_type& __a)
: _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
{}
protected:
allocator_type _M_data_allocator;
_Tp* _M_start;
_Tp* _M_finish;
_Tp* _M_end_of_storage;
_Tp* _M_allocate(size_t __n)
{ return _M_data_allocator.allocate(__n); }
void _M_deallocate(_Tp* __p, size_t __n)
{ if (__p) _M_data_allocator.deallocate(__p, __n); }
};
// Specialization for allocators that have the property that we don't
// actually have to store an allocator object.
template <class _Tp, class _Allocator>
class _Vector_alloc_base<_Tp, _Allocator, true> {
public:
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Vector_alloc_base(const allocator_type&)
: _M_start(0), _M_finish(0), _M_end_of_storage(0)
{}
protected:
_Tp* _M_start;
_Tp* _M_finish;
_Tp* _M_end_of_storage;
typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type;
_Tp* _M_allocate(size_t __n)
{ return _Alloc_type::allocate(__n); }
void _M_deallocate(_Tp* __p, size_t __n)
{ _Alloc_type::deallocate(__p, __n);}
};
template <class _Tp, class _Alloc>
struct _Vector_base
: public _Vector_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
typedef _Vector_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
_Vector_base(const allocator_type& __a) : _Base(__a) {}
_Vector_base(size_t __n, const allocator_type& __a) : _Base(__a) {
_M_start = _M_allocate(__n);
_M_finish = _M_start;
_M_end_of_storage = _M_start + __n;
}
~_Vector_base() { _M_deallocate(_M_start, _M_end_of_storage - _M_start); }
};
#else /* __STL_USE_STD_ALLOCATORS */
template <class _Tp, class _Alloc>
class _Vector_base {
public:
typedef _Alloc allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Vector_base(const _Alloc&)
: _M_start(0), _M_finish(0), _M_end_of_storage(0) {}
_Vector_base(size_t __n, const _Alloc&)
: _M_start(0), _M_finish(0), _M_end_of_storage(0)
{
_M_start = _M_allocate(__n);
_M_finish = _M_start;
_M_end_of_storage = _M_start + __n;
}
~_Vector_base() { _M_deallocate(_M_start, _M_end_of_storage - _M_start); }
protected:
_Tp* _M_start;
_Tp* _M_finish;
_Tp* _M_end_of_storage;
typedef simple_alloc<_Tp, _Alloc> _M_data_allocator;
_Tp* _M_allocate(size_t __n)
{ return _M_data_allocator::allocate(__n); }
void _M_deallocate(_Tp* __p, size_t __n)
{ _M_data_allocator::deallocate(__p, __n); }
};
#endif /* __STL_USE_STD_ALLOCATORS */
template <class _Tp, class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
class vector : protected _Vector_base<_Tp, _Alloc>
{
// requirements:
__STL_CLASS_REQUIRES(_Tp, _Assignable);
private:
typedef _Vector_base<_Tp, _Alloc> _Base;
public:
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type* iterator;
typedef const value_type* const_iterator;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); }
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef reverse_iterator<const_iterator, value_type, const_reference,
difference_type> const_reverse_iterator;
typedef reverse_iterator<iterator, value_type, reference, difference_type>
reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
protected:
#ifdef __STL_HAS_NAMESPACES
using _Base::_M_allocate;
using _Base::_M_deallocate;
using _Base::_M_start;
using _Base::_M_finish;
using _Base::_M_end_of_storage;
#endif /* __STL_HAS_NAMESPACES */
protected:
void _M_insert_aux(iterator __position, const _Tp& __x);
void _M_insert_aux(iterator __position);
public:
iterator begin() { return _M_start; }
const_iterator begin() const { return _M_start; }
iterator end() { return _M_finish; }
const_iterator end() const { return _M_finish; }
reverse_iterator rbegin()
{ return reverse_iterator(end()); }
const_reverse_iterator rbegin() const
{ return const_reverse_iterator(end()); }
reverse_iterator rend()
{ return reverse_iterator(begin()); }
const_reverse_iterator rend() const
{ return const_reverse_iterator(begin()); }
size_type size() const
{ return size_type(end() - begin()); }
size_type max_size() const
{ return size_type(-1) / sizeof(_Tp); }
size_type capacity() const
{ return size_type(_M_end_of_storage - begin()); }
bool empty() const
{ return begin() == end(); }
reference operator[](size_type __n) { return *(begin() + __n); }
const_reference operator[](size_type __n) const { return *(begin() + __n); }
#ifdef __STL_THROW_RANGE_ERRORS
void _M_range_check(size_type __n) const {
if (__n >= this->size())
__stl_throw_range_error("vector");
}
//at有越界检查,operator[]没有,所以最好不用[]
reference at(size_type __n)
{ _M_range_check(__n); return (*this)[__n]; }
const_reference at(size_type __n) const
{ _M_range_check(__n); return (*this)[__n]; }
#endif /* __STL_THROW_RANGE_ERRORS */
explicit vector(const allocator_type& __a = allocator_type())
: _Base(__a) {}
vector(size_type __n, const _Tp& __value,
const allocator_type& __a = allocator_type())
: _Base(__n, __a)
{ _M_finish = uninitialized_fill_n(_M_start, __n, __value); }
explicit vector(size_type __n)
: _Base(__n, allocator_type())
{ _M_finish = uninitialized_fill_n(_M_start, __n, _Tp()); }
vector(const vector<_Tp, _Alloc>& __x)
: _Base(__x.size(), __x.get_allocator())
{ _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); }
#ifdef __STL_MEMBER_TEMPLATES
// Check whether it's an integral type. If so, it's not an iterator.
template <class _InputIterator>
vector(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type()) : _Base(__a) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_initialize_aux(__first, __last, _Integral());
}
template <class _Integer>
void _M_initialize_aux(_Integer __n, _Integer __value, __true_type) {
_M_start = _M_allocate(__n);
_M_end_of_storage = _M_start + __n;
_M_finish = uninitialized_fill_n(_M_start, __n, __value);
}
template <class _InputIterator>
void _M_initialize_aux(_InputIterator __first, _InputIterator __last,
__false_type) {
_M_range_initialize(__first, __last, __ITERATOR_CATEGORY(__first));
}
#else
vector(const _Tp* __first, const _Tp* __last,
const allocator_type& __a = allocator_type())
: _Base(__last - __first, __a)
{ _M_finish = uninitialized_copy(__first, __last, _M_start); }
#endif /* __STL_MEMBER_TEMPLATES */
~vector() { destroy(_M_start, _M_finish); }
vector<_Tp, _Alloc>& operator=(const vector<_Tp, _Alloc>& __x);
void reserve(size_type __n) {
if (capacity() < __n) {
const size_type __old_size = size();
iterator __tmp = _M_allocate_and_copy(__n, _M_start, _M_finish);
destroy(_M_start, _M_finish);
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __tmp;
_M_finish = __tmp + __old_size;
_M_end_of_storage = _M_start + __n;
}
}
// assign(), a generalized assignment member function. Two
// versions: one that takes a count, and one that takes a range.
// The range version is a member template, so we dispatch on whether
// or not the type is an integer.
void assign(size_type __n, const _Tp& __val) { _M_fill_assign(__n, __val); }
void _M_fill_assign(size_type __n, const _Tp& __val);
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void assign(_InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
template <class _Integer>
void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_type) __n, (_Tp) __val); }
template <class _InputIter>
void _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
{ _M_assign_aux(__first, __last, __ITERATOR_CATEGORY(__first)); }
template <class _InputIterator>
void _M_assign_aux(_InputIterator __first, _InputIterator __last,
input_iterator_tag);
template <class _ForwardIterator>
void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag);
#endif /* __STL_MEMBER_TEMPLATES */
reference front() { return *begin(); }
const_reference front() const { return *begin(); }
reference back() { return *(end() - 1); }
const_reference back() const { return *(end() - 1); }
void push_back(const _Tp& __x) {
if (_M_finish != _M_end_of_storage) {
construct(_M_finish, __x);
++_M_finish;
}
else
_M_insert_aux(end(), __x);
}
void push_back() {
if (_M_finish != _M_end_of_storage) {
construct(_M_finish);
++_M_finish;
}
else
_M_insert_aux(end());
}
void swap(vector<_Tp, _Alloc>& __x) {
__STD::swap(_M_start, __x._M_start);
__STD::swap(_M_finish, __x._M_finish);
__STD::swap(_M_end_of_storage, __x._M_end_of_storage);
}
iterator insert(iterator __position, const _Tp& __x) {
size_type __n = __position - begin();
if (_M_finish != _M_end_of_storage && __position == end()) {
construct(_M_finish, __x);
++_M_finish;
}
else
_M_insert_aux(__position, __x);
return begin() + __n;
}
iterator insert(iterator __position) {
size_type __n = __position - begin();
if (_M_finish != _M_end_of_storage && __position == end()) {
construct(_M_finish);
++_M_finish;
}
else
_M_insert_aux(__position);
return begin() + __n;
}
#ifdef __STL_MEMBER_TEMPLATES
// Check whether it's an integral type. If so, it's not an iterator.
template <class _InputIterator>
void insert(iterator __pos, _InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__pos, __first, __last, _Integral());
}
template <class _Integer>
void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
__true_type)
{ _M_fill_insert(__pos, (size_type) __n, (_Tp) __val); }
template <class _InputIterator>
void _M_insert_dispatch(iterator __pos,
_InputIterator __first, _InputIterator __last,
__false_type) {
_M_range_insert(__pos, __first, __last, __ITERATOR_CATEGORY(__first));
}
#else /* __STL_MEMBER_TEMPLATES */
void insert(iterator __position,
const_iterator __first, const_iterator __last);
#endif /* __STL_MEMBER_TEMPLATES */
void insert (iterator __pos, size_type __n, const _Tp& __x)
{ _M_fill_insert(__pos, __n, __x); }
void _M_fill_insert (iterator __pos, size_type __n, const _Tp& __x);
void pop_back() {
--_M_finish;
destroy(_M_finish);
}
iterator erase(iterator __position) {
if (__position + 1 != end())
copy(__position + 1, _M_finish, __position);
--_M_finish;
destroy(_M_finish);
return __position;
}
iterator erase(iterator __first, iterator __last) {
iterator __i = copy(__last, _M_finish, __first);
destroy(__i, _M_finish);
_M_finish = _M_finish - (__last - __first);
return __first;
}
void resize(size_type __new_size, const _Tp& __x) {
if (__new_size < size())
erase(begin() + __new_size, end());
else
insert(end(), __new_size - size(), __x);
}
void resize(size_type __new_size) { resize(__new_size, _Tp()); }
void clear() { erase(begin(), end()); }
protected:
#ifdef __STL_MEMBER_TEMPLATES
template <class _ForwardIterator>
iterator _M_allocate_and_copy(size_type __n, _ForwardIterator __first,
_ForwardIterator __last)
{
iterator __result = _M_allocate(__n);
__STL_TRY {
uninitialized_copy(__first, __last, __result);
return __result;
}
__STL_UNWIND(_M_deallocate(__result, __n));
}
#else /* __STL_MEMBER_TEMPLATES */
iterator _M_allocate_and_copy(size_type __n, const_iterator __first,
const_iterator __last)
{
iterator __result = _M_allocate(__n);
__STL_TRY {
uninitialized_copy(__first, __last, __result);
return __result;
}
__STL_UNWIND(_M_deallocate(__result, __n));
}
#endif /* __STL_MEMBER_TEMPLATES */
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void _M_range_initialize(_InputIterator __first,
_InputIterator __last, input_iterator_tag)
{
for ( ; __first != __last; ++__first)
push_back(*__first);
}
// This function is only called by the constructor.
template <class _ForwardIterator>
void _M_range_initialize(_ForwardIterator __first,
_ForwardIterator __last, forward_iterator_tag)
{
size_type __n = 0;
distance(__first, __last, __n);
_M_start = _M_allocate(__n);
_M_end_of_storage = _M_start + __n;
_M_finish = uninitialized_copy(__first, __last, _M_start); //会根据_M_start的类型isPOD调用直接内存copy或者construct
} //为什么输入迭代器只能push_back
template <class _InputIterator>
void _M_range_insert(iterator __pos,
_InputIterator __first, _InputIterator __last,
input_iterator_tag);
template <class _ForwardIterator>
void _M_range_insert(iterator __pos,
_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag);
#endif /* __STL_MEMBER_TEMPLATES */
};
template <class _Tp, class _Alloc>
inline bool
operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{
return __x.size() == __y.size() &&
equal(__x.begin(), __x.end(), __y.begin());
}
template <class _Tp, class _Alloc>
inline bool
operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{
return lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Tp, class _Alloc>
inline void swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
{
__x.swap(__y);
}
template <class _Tp, class _Alloc>
inline bool
operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
return !(__x == __y);
}
template <class _Tp, class _Alloc>
inline bool
operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
return __y < __x;
}
template <class _Tp, class _Alloc>
inline bool
operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
return !(__y < __x);
}
template <class _Tp, class _Alloc>
inline bool
operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
return !(__x < __y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
template <class _Tp, class _Alloc>
vector<_Tp,_Alloc>&
vector<_Tp,_Alloc>::operator=(const vector<_Tp, _Alloc>& __x)
{
if (&__x != this) {
const size_type __xlen = __x.size();
if (__xlen > capacity()) {
iterator __tmp = _M_allocate_and_copy(__xlen, __x.begin(), __x.end());
destroy(_M_start, _M_finish);
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __tmp;
_M_end_of_storage = _M_start + __xlen;
}
else if (size() >= __xlen) {
iterator __i = copy(__x.begin(), __x.end(), begin());
destroy(__i, _M_finish);
}
else {
copy(__x.begin(), __x.begin() + size(), _M_start);
uninitialized_copy(__x.begin() + size(), __x.end(), _M_finish);
}
_M_finish = _M_start + __xlen;
}
return *this;
}
template <class _Tp, class _Alloc>
void vector<_Tp, _Alloc>::_M_fill_assign(size_t __n, const value_type& __val)
{
if (__n > capacity()) {
vector<_Tp, _Alloc> __tmp(__n, __val, get_allocator()); //跟reserve()比较更高效
__tmp.swap(*this);
}
else if (__n > size()) {
fill(begin(), end(), __val);
_M_finish = uninitialized_fill_n(_M_finish, __n - size(), __val);
}
else
erase(fill_n(begin(), __n, __val), end());
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _Tp, class _Alloc> template <class _InputIter>
void vector<_Tp, _Alloc>::_M_assign_aux(_InputIter __first, _InputIter __last,
input_iterator_tag) {
iterator __cur = begin();
for ( ; __first != __last && __cur != end(); ++__cur, ++__first)
*__cur = *__first;
if (__first == __last)
erase(__cur, end());
else
insert(end(), __first, __last);
}
template <class _Tp, class _Alloc> template <class _ForwardIter>
void
vector<_Tp, _Alloc>::_M_assign_aux(_ForwardIter __first, _ForwardIter __last,
forward_iterator_tag) {
size_type __len = 0;
distance(__first, __last, __len);
if (__len > capacity()) {
iterator __tmp = _M_allocate_and_copy(__len, __first, __last);
destroy(_M_start, _M_finish);
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __tmp;
_M_end_of_storage = _M_finish = _M_start + __len;
}
else if (size() >= __len) {
iterator __new_finish = copy(__first, __last, _M_start);
destroy(__new_finish, _M_finish);
_M_finish = __new_finish;
}
else {
_ForwardIter __mid = __first;
advance(__mid, size());
copy(__first, __mid, _M_start);
_M_finish = uninitialized_copy(__mid, __last, _M_finish);
}
}
#endif /* __STL_MEMBER_TEMPLATES */
template <class _Tp, class _Alloc>
void
vector<_Tp, _Alloc>::_M_insert_aux(iterator __position, const _Tp& __x)
{
if (_M_finish != _M_end_of_storage) {
construct(_M_finish, *(_M_finish - 1));
++_M_finish;
_Tp __x_copy = __x;
copy_backward(__position, _M_finish - 2, _M_finish - 1);
*__position = __x_copy;
}
else {
const size_type __old_size = size();
const size_type __len = __old_size != 0 ? 2 * __old_size : 1;
iterator __new_start = _M_allocate(__len);
iterator __new_finish = __new_start;
__STL_TRY {
__new_finish = uninitialized_copy(_M_start, __position, __new_start);
construct(__new_finish, __x);
++__new_finish;
__new_finish = uninitialized_copy(__position, _M_finish, __new_finish);
}
__STL_UNWIND((destroy(__new_start,__new_finish),
_M_deallocate(__new_start,__len)));
destroy(begin(), end());
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __new_start;
_M_finish = __new_finish;
_M_end_of_storage = __new_start + __len;
}
}
template <class _Tp, class _Alloc>
void
vector<_Tp, _Alloc>::_M_insert_aux(iterator __position)
{
if (_M_finish != _M_end_of_storage) {
construct(_M_finish, *(_M_finish - 1));
++_M_finish;
copy_backward(__position, _M_finish - 2, _M_finish - 1);
*__position = _Tp();
}
else {
const size_type __old_size = size();
const size_type __len = __old_size != 0 ? 2 * __old_size : 1;
iterator __new_start = _M_allocate(__len);
iterator __new_finish = __new_start;
__STL_TRY {
__new_finish = uninitialized_copy(_M_start, __position, __new_start);
construct(__new_finish);
++__new_finish;
__new_finish = uninitialized_copy(__position, _M_finish, __new_finish);
}
__STL_UNWIND((destroy(__new_start,__new_finish),
_M_deallocate(__new_start,__len)));
destroy(begin(), end());
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __new_start;
_M_finish = __new_finish;
_M_end_of_storage = __new_start + __len;
}
}
template <class _Tp, class _Alloc>
void vector<_Tp, _Alloc>::_M_fill_insert(iterator __position, size_type __n,
const _Tp& __x)
{
if (__n != 0) {
if (size_type(_M_end_of_storage - _M_finish) >= __n) {
_Tp __x_copy = __x;
const size_type __elems_after = _M_finish - __position;
iterator __old_finish = _M_finish;
if (__elems_after > __n) {
uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
_M_finish += __n;
copy_backward(__position, __old_finish - __n, __old_finish);
fill(__position, __position + __n, __x_copy);
}
else {
uninitialized_fill_n(_M_finish, __n - __elems_after, __x_copy);
_M_finish += __n - __elems_after;
uninitialized_copy(__position, __old_finish, _M_finish);
_M_finish += __elems_after;
fill(__position, __old_finish, __x_copy);
}
}
else {
const size_type __old_size = size();
const size_type __len = __old_size + max(__old_size, __n);
iterator __new_start = _M_allocate(__len);
iterator __new_finish = __new_start;
__STL_TRY {
__new_finish = uninitialized_copy(_M_start, __position, __new_start);
__new_finish = uninitialized_fill_n(__new_finish, __n, __x);
__new_finish
= uninitialized_copy(__position, _M_finish, __new_finish);
}
__STL_UNWIND((destroy(__new_start,__new_finish),
_M_deallocate(__new_start,__len)));
destroy(_M_start, _M_finish);
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __new_start;
_M_finish = __new_finish;
_M_end_of_storage = __new_start + __len;
}
}
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _Tp, class _Alloc> template <class _InputIterator>
void
vector<_Tp, _Alloc>::_M_range_insert(iterator __pos,
_InputIterator __first,
_InputIterator __last,
input_iterator_tag)
{
for ( ; __first != __last; ++__first) {
__pos = insert(__pos, *__first);
++__pos;
}
}
template <class _Tp, class _Alloc> template <class _ForwardIterator>
void
vector<_Tp, _Alloc>::_M_range_insert(iterator __position,
_ForwardIterator __first,
_ForwardIterator __last,
forward_iterator_tag)
{
if (__first != __last) {
size_type __n = 0;
distance(__first, __last, __n);
if (size_type(_M_end_of_storage - _M_finish) >= __n) {
const size_type __elems_after = _M_finish - __position;
iterator __old_finish = _M_finish;
if (__elems_after > __n) {
uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
_M_finish += __n;
copy_backward(__position, __old_finish - __n, __old_finish);
copy(__first, __last, __position);
}
else {
_ForwardIterator __mid = __first;
advance(__mid, __elems_after);
uninitialized_copy(__mid, __last, _M_finish);
_M_finish += __n - __elems_after;
uninitialized_copy(__position, __old_finish, _M_finish);
_M_finish += __elems_after;
copy(__first, __mid, __position);
}
}
else {
const size_type __old_size = size();
const size_type __len = __old_size + max(__old_size, __n);
iterator __new_start = _M_allocate(__len);
iterator __new_finish = __new_start;
__STL_TRY {
__new_finish = uninitialized_copy(_M_start, __position, __new_start);
__new_finish = uninitialized_copy(__first, __last, __new_finish);
__new_finish
= uninitialized_copy(__position, _M_finish, __new_finish);
}
__STL_UNWIND((destroy(__new_start,__new_finish),
_M_deallocate(__new_start,__len)));
destroy(_M_start, _M_finish);
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __new_start;
_M_finish = __new_finish;
_M_end_of_storage = __new_start + __len;
}
}
}
#else /* __STL_MEMBER_TEMPLATES */
template <class _Tp, class _Alloc>
void
vector<_Tp, _Alloc>::insert(iterator __position,
const_iterator __first,
const_iterator __last)
{
if (__first != __last) {
size_type __n = 0;
distance(__first, __last, __n);
if (size_type(_M_end_of_storage - _M_finish) >= __n) {
const size_type __elems_after = _M_finish - __position;
iterator __old_finish = _M_finish;
if (__elems_after > __n) {
uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
_M_finish += __n;
copy_backward(__position, __old_finish - __n, __old_finish);
copy(__first, __last, __position);
}
else {
uninitialized_copy(__first + __elems_after, __last, _M_finish);
_M_finish += __n - __elems_after;
uninitialized_copy(__position, __old_finish, _M_finish);
_M_finish += __elems_after;
copy(__first, __first + __elems_after, __position);
}
}
else {
const size_type __old_size = size();
const size_type __len = __old_size + max(__old_size, __n);
iterator __new_start = _M_allocate(__len);
iterator __new_finish = __new_start;
__STL_TRY {
__new_finish = uninitialized_copy(_M_start, __position, __new_start);
__new_finish = uninitialized_copy(__first, __last, __new_finish);
__new_finish
= uninitialized_copy(__position, _M_finish, __new_finish);
}
__STL_UNWIND((destroy(__new_start,__new_finish),
_M_deallocate(__new_start,__len)));
destroy(_M_start, _M_finish);
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __new_start;
_M_finish = __new_finish;
_M_end_of_storage = __new_start + __len;
}
}
}
#endif /* __STL_MEMBER_TEMPLATES */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#pragma reset woff 1375
#endif
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_VECTOR_H */
// Local Variables:
// mode:C++
// End: