Hadoop阅读笔记(六)——洞悉Hadoop序列化机制Writable

  酒,是个好东西,前提要适量。今天参加了公司的年会,主题就是吃、喝、吹,除了那些天生话唠外,大部分人需要加点酒来作催化剂,让一个平时沉默寡言的码农也能成为一个喷子!在大家推杯换盏之际,难免一些画面浮现脑海,有郁闷抓狂的,有出成果喜极而涕的,有不知前途在哪儿的迷茫与不安……总的来说,近一年来,不白活,不虚度,感触良多,不是一言两语能说得清道的明的,有时间可以做个总结,下面还是言归正传谈技术吧。

       上篇在了解了Hadoop的目录和源码结构后,说好的要啃源码的,那就得啃。也感谢一直以来关注我、支持我的网友,您的关注一直都是我默默前行的动力,也是我在这个行业摸打滚爬的精神食粮^_^

  这里,我们主要对于org.apache.hadoop.conf和org.apache.hadoop.io包的部分进行一个解读,主要包含了hadoop的资源配置类Configuration、hadoop的序列化机制、Writable的地位与继承实现关系、常用类解析。

 

  一、Hadoop资源配置Configuration

  Hadoop没有使用java.util.Properties管理配置文件,其使用了一套独有的配置文件管理系统,并提供自己的API,即使用org.apache.hadoop.conf.Configuration处理配置信息。

  通过org.apache.io.conf包我们可以发现主要包含以下几个接口和类:

 

  Configurable:接口

  方法:setConf()、getConf()

 

  Configured:实现了Configurable的类

  方法:除了实现了Configurable接口中的方法,还有构造函数、用于配置Configuration参数

 

  Configuration:

  Configuration类用来设定资源文件。资源文件是包含键值对的XML数据,其可以是字符串或是路径。如果是字符串,将会根据字符串代表的文件名到classpath下找,如果是路径,则会直接到本地文件系统查找。

  Hadoop默认是加载两个资源文件:core-default.xml和core-site.xml

  Configuration参数可以声明为final类型,一旦定义为final类型,后面就无法被更改,例子如下:  

<property>
    <name>dfs.client.buffer.dir</name>
    <value>/tmp/hadoop/dfs/client</value>
    <final>true</final>
</property>

   主要方法:有添加资源文件addResource、获取属性值get、设置一个键值对set、获取资源文件个数size等。

 

  二、Hadoop序列化机制

  在进程间传递对象对象持久化存储的时候,就不得不提到序列化以及反序列化,就需要序列化对象成字节流,反之当要将接收到或从磁盘读取的字节流转换为对象,就要进行反序列化。

  序列化:把对象转换为字节序列的过程

  反序列化:把字节序列恢复为对象的过程

  下面是传统序列化和反序列化的代码示例:

  MyObject(用于序列化和反序列化的类对象):

public class MyObject  implements Serializable{
	private static final long serialVersionUID = -5809782578272943999L;
	public String name ;
	private int age;
	public String sex;
	public String getName() {
		return name;
	}
	public void setName(String name) {
		this.name = name;
	}
	public int getAge() {
		return age;
	}
	public void setAge(int age) {
		this.age = age;
	}
	public String getSex() {
		return sex;
	}
	public void setSex(String sex) {
		this.sex = sex;
	}
}

  测试序列化和反序列化代码:

public class MySerializableTest {

	public static void main(String[] args) throws FileNotFoundException, IOException, ClassNotFoundException {
		SerializeObject();
		MyObject object = Deserialize();
		System.out.println("name:" + object.getName() + "\tage:" + object.getAge() + "\tsex:" + object.getSex());
	}

	private static MyObject Deserialize() throws FileNotFoundException, IOException, ClassNotFoundException {
		ObjectInputStream oi = new ObjectInputStream(new FileInputStream(new File("/usr/local/hadoop-0.20.2/serialize.txt")));
		MyObject object = (MyObject) oi.readObject();
		System.out.println("反序列化成功");
		return object;
	}

	private static void SerializeObject() throws FileNotFoundException, IOException {

		MyObject object = new MyObject();
		object.setName("Jackie");
		object.setAge(25);
		object.setSex("male");
		ObjectOutputStream oo = new ObjectOutputStream(new FileOutputStream(new File("/usr/local/hadoop-0.20.2/serialize.txt")));
		oo.writeObject(object);
		System.out.println("序列化成功");
		oo.close();
		
	}
}

  最终控制台打印信息:

序列化成功
反序列化成功
name:Jackie	age:25	sex:male

  注意:一定要在要序列化和反序列化的类上实现标记接口Serializable,否则会报错。

 

  当然,这不是我们要将的Hadoop的序列化机制,深入研究传统的序列化机制,就会发现这种Java序列化机制有自己的缺陷比如计算开销大、序列化的结果占用空间大等。作为一个分布式集群的代名词,这种缺点是不可饶恕的,在每个节点之间进行RPC通讯时当遇到不可想象的序列化后的对象占用空间,这是一种灾难。所以,Hadoop编写实现了自己的序列化机制。

 

  三、Writable的家族体系

  Hadoop的序列化要从这个Writable接口说起。

  Writable接口,即org.apache.hadoop.io.Writable接口,整个Hadoop的所有可序列化的对象接口都必须实现Writable接口,该接口的方法很简单,与传统的序列化类神似。一个是write方法,用于将对象写入字节流,一个是readFields方法,用于将字节流读出解析成对象。

  代码示例:

public class MyWritable implements Writable {
       // Some data     
       private int counter;
       private long timestamp;
       
       public void write(DataOutput out) throws IOException {
         out.writeInt(counter);
         out.writeLong(timestamp);
       }
       
       public void readFields(DataInput in) throws IOException {
         counter = in.readInt();
         timestamp = in.readLong();
       }
       
       public static MyWritable read(DataInput in) throws IOException {
         MyWritable w = new MyWritable();
         w.readFields(in);
         return w;
       }
 }

  Writable的家族很庞大,主要成员涵盖在下面的一幅图中:  

  Hadoop阅读笔记(六)——洞悉Hadoop序列化机制Writable_第1张图片

 

  四、常见类举例

  BytesWritable

  该类实现了WritableComparable、Writable、Comparable。其用于一串字节序列。

  其主要方法除了readFields(DataInput in)、write(DataOutput out)外,还有equals(Object right_obj)、getSize()这样的方法。

 

  FloatWritable

  该类实现了WritableComparable、Writable、Comparable。用于Float类型的序列化。

  其主要方法有compareTo(Object o)、readFields(DataInput in)、write(DataOutput out)等。

 

  IOUtils

  该类是I/O操作类。

  主要方法有忽略异常关闭closeable对象cleanup()方法、忽略异常关闭流closeStream()方法、拷贝流copyBytes()方法、循环读取字节流长度readFully()方法等。

 

  MapFile

  MapFile是一个Map集合,包含两个文件:数据文件(map中的键值对)、索引文件

  索引文件会一次性完全读进内存,所以,键的实现需要尽可能小。

  Map文件是通过有序的添加entries构成的,为维持这么个大数据及,通过在一个有序列表中拷贝先前版本进行更新,并得到最新版本的数据文件。

 

  Text

  该类存储采用UTF-8编码的文本,其提供了在字节流层面的序列/反序列文本、比较文本的方法。另外其还提供了翻转字符串的方法。

  主要方法有:charAt、clear、decode、encode、find、readFields、write等

 

  SequenceFiles

  SequenceFiles是由二进制键值对构成的平面文件。

  SequenceFile文件有三个写入类基于SequenceFile.CompressionType压缩键值对

  1.Writer:不压缩

  2.RecordCompressWriter:记录压缩,只压缩value

  3.BlockCompressWriter:块压缩,压缩key和value

 

  WritableFactory

  该类可以用来创建Writable对象

 

  对于Hadoop等大数据技术有兴趣的欢迎加群413471695交流讨论^_^

  本文链接:《Hadoop阅读笔记(六)——洞悉Hadoop序列化机制Writable》

 

你可能感兴趣的:(Hadoop阅读笔记(六)——洞悉Hadoop序列化机制Writable)