平时我们写MapReduce程序的时候,在设置输入格式的时候,总会调用形如job.setInputFormatClass(KeyValueTextInputFormat.class)来保证输入文件按照我们想要的格式被读取。所有的输入格式都继承于InputFormat,这是一个抽象类,其子类有专门用于读取普通文件的FileInputFormat,用来读取数据库的DBInputFormat等等。
不同的InputFormat都会按自己的实现来读取输入数据并产生输入分片,一个输入分片会被单独的MapTask作为数据源,下面我们先看看这些输入分片(InputSplit)是什么样的。
InPutSplit:
我们知道Mapper的输入是一个一个的输入分片,称为InputSplit。InputSplit是一个抽象类,它在逻辑上包含了提供给处理这个InputSplit的Mapper的所有K-V对。
- public abstract class InputSplit {
-
- public abstract long getLength() throws IOException, InterruptedException;
-
-
- public abstract
- String[] getLocations() throws IOException, InterruptedException;
- }
getLength()用来获取InputSplit的大小,以支持对InputSplit进行排序,而getLocations()则用来获取存储分片的位置列表。
我们来看一个简单的InputSplit子类:FileSplit,源码如下:
- public class FileSplit extends InputSplit implements Writable {
- private Path file;
- private long start;
- private long length;
- private String[] hosts;
-
- FileSplit() {}
-
-
- public FileSplit(Path file, long start, long length, String[] hosts) {
- this.file = file;
- this.start = start;
- this.length = length;
- this.hosts = hosts;
- }
-
-
- public Path getPath() { return file; }
-
-
- public long getStart() { return start; }
-
-
- @Override
- public long getLength() { return length; }
-
- @Override
- public String toString() { return file + ":" + start + "+" + length; }
-
-
-
-
-
- @Override
- public void write(DataOutput out) throws IOException {
- Text.writeString(out, file.toString());
- out.writeLong(start);
- out.writeLong(length);
- }
-
- @Override
- public void readFields(DataInput in) throws IOException {
- file = new Path(Text.readString(in));
- start = in.readLong();
- length = in.readLong();
- hosts = null;
- }
-
- @Override
- public String[] getLocations() throws IOException {
- if (this.hosts == null) {
- return new String[]{};
- } else {
- return this.hosts;
- }
- }
- }
从上面的源码我们可以看到,一个FileSplit是由文件路径,分片开始位置,分片大小和存储分片数据的hosts列表组成,由这些信息我们就可以从输入文件中切分出提供给单个Mapper的输入数据。这些属性会在Constructor设置,我们在后面会看到这会在InputFormat的getSplits()构造这些分片。
我们再来看看CombinerFileSplit的源码:
- @InterfaceAudience.Public
- @InterfaceStability.Stable
- public class CombineFileSplit extends InputSplit implements Writable {
-
- private Path[] paths;
- private long[] startoffset;
- private long[] lengths;
- private String[] locations;
- private long totLength;
-
-
- public CombineFileSplit() {}
- public CombineFileSplit(Path[] files, long[] start,
- long[] lengths, String[] locations) {
- initSplit(files, start, lengths, locations);
- }
-
- public CombineFileSplit(Path[] files, long[] lengths) {
- long[] startoffset = new long[files.length];
- for (int i = 0; i < startoffset.length; i++) {
- startoffset[i] = 0;
- }
- String[] locations = new String[files.length];
- for (int i = 0; i < locations.length; i++) {
- locations[i] = "";
- }
- initSplit(files, startoffset, lengths, locations);
- }
-
- private void initSplit(Path[] files, long[] start,
- long[] lengths, String[] locations) {
- this.startoffset = start;
- this.lengths = lengths;
- this.paths = files;
- this.totLength = 0;
- this.locations = locations;
- for(long length : lengths) {
- totLength += length;
- }
- }
-
-
- public CombineFileSplit(CombineFileSplit old) throws IOException {
- this(old.getPaths(), old.getStartOffsets(),
- old.getLengths(), old.getLocations());
- }
-
- public long getLength() {
- return totLength;
- }
-
-
- public long[] getStartOffsets() {
- return startoffset;
- }
-
-
- public long[] getLengths() {
- return lengths;
- }
-
-
- public long getOffset(int i) {
- return startoffset[i];
- }
-
-
- public long getLength(int i) {
- return lengths[i];
- }
-
-
- public int getNumPaths() {
- return paths.length;
- }
-
-
- public Path getPath(int i) {
- return paths[i];
- }
-
-
- public Path[] getPaths() {
- return paths;
- }
-
-
- public String[] getLocations() throws IOException {
- return locations;
- }
-
- public void readFields(DataInput in) throws IOException {
- totLength = in.readLong();
- int arrLength = in.readInt();
- lengths = new long[arrLength];
- for(int i=0; i<arrLength;i++) {
- lengths[i] = in.readLong();
- }
- int filesLength = in.readInt();
- paths = new Path[filesLength];
- for(int i=0; i<filesLength;i++) {
- paths[i] = new Path(Text.readString(in));
- }
- arrLength = in.readInt();
- startoffset = new long[arrLength];
- for(int i=0; i<arrLength;i++) {
- startoffset[i] = in.readLong();
- }
- }
-
- public void write(DataOutput out) throws IOException {
- out.writeLong(totLength);
- out.writeInt(lengths.length);
- for(long length : lengths) {
- out.writeLong(length);
- }
- out.writeInt(paths.length);
- for(Path p : paths) {
- Text.writeString(out, p.toString());
- }
- out.writeInt(startoffset.length);
- for(long length : startoffset) {
- out.writeLong(length);
- }
- }
-
- @Override
- public String toString() {
- StringBuffer sb = new StringBuffer();
- for (int i = 0; i < paths.length; i++) {
- if (i == 0 ) {
- sb.append("Paths:");
- }
- sb.append(paths[i].toUri().getPath() + ":" + startoffset[i] +
- "+" + lengths[i]);
- if (i < paths.length -1) {
- sb.append(",");
- }
- }
- if (locations != null) {
- String locs = "";
- StringBuffer locsb = new StringBuffer();
- for (int i = 0; i < locations.length; i++) {
- locsb.append(locations[i] + ":");
- }
- locs = locsb.toString();
- sb.append(" Locations:" + locs + "; ");
- }
- return sb.toString();
- }
- }
与FileSPlit类似,CombineFileSplit同样包含文件路径,分片起始位置,分片大小和存储分片数据的host列表,由于CombineFileSplit是针对小文件的,它把很多小文件包在一个InputSplit中,这样一个Mapper就可以处理很多小文件。要知道我们上面的FileSplit是对应一个输入文件的也就是说如果用FileSplit对应的FileInputFormat来作为输入格式。那么即使文件特别小,也是单独计算成一个分片来处理的。当我们的输入是由大量小文件组成的,就会导致同样大量的InputSplit,从而需要同样大量的Mapper来处理,这将很慢,想想一堆Map Task要运行(运行一个新的MapTask可是要启动虚拟机的),这是不符合Hadoop的设计理念的,所以使用CombineFileSplit可以优化Hadoop处理众多小文件的场景。
最后介绍TagInputSplit,这个类就是封装了一个InputSplit,然后加了一些tags在里面满足我们需要这些tags数据的情况,我们从下面就可以一目了然。
- class TaggedInputSplit extends InputSplit implements Configurable, Writable {
-
- private Class<? extends InputSplit> inputSplitClass;
-
- private InputSplit inputSplit;
-
- @SuppressWarnings("unchecked")
- private Class<? extends InputFormat> inputFormatClass;
-
- @SuppressWarnings("unchecked")
- private Class<? extends Mapper> mapperClass;
-
- private Configuration conf;
-
- public TaggedInputSplit() {
-
- }
-
-
- @SuppressWarnings("unchecked")
- public TaggedInputSplit(InputSplit inputSplit, Configuration conf,
- Class<? extends InputFormat> inputFormatClass,
- Class<? extends Mapper> mapperClass) {
- this.inputSplitClass = inputSplit.getClass();
- this.inputSplit = inputSplit;
- this.conf = conf;
- this.inputFormatClass = inputFormatClass;
- this.mapperClass = mapperClass;
- }
-
-
- public InputSplit getInputSplit() {
- return inputSplit;
- }
-
-
- @SuppressWarnings("unchecked")
- public Class<? extends InputFormat> getInputFormatClass() {
- return inputFormatClass;
- }
-
-
- @SuppressWarnings("unchecked")
- public Class<? extends Mapper> getMapperClass() {
- return mapperClass;
- }
-
- public long getLength() throws IOException, InterruptedException {
- return inputSplit.getLength();
- }
-
- public String[] getLocations() throws IOException, InterruptedException {
- return inputSplit.getLocations();
- }
-
- @SuppressWarnings("unchecked")
- public void readFields(DataInput in) throws IOException {
- inputSplitClass = (Class<? extends InputSplit>) readClass(in);
- inputFormatClass = (Class<? extends InputFormat<?, ?>>) readClass(in);
- mapperClass = (Class<? extends Mapper<?, ?, ?, ?>>) readClass(in);
- inputSplit = (InputSplit) ReflectionUtils
- .newInstance(inputSplitClass, conf);
- SerializationFactory factory = new SerializationFactory(conf);
- Deserializer deserializer = factory.getDeserializer(inputSplitClass);
- deserializer.open((DataInputStream)in);
- inputSplit = (InputSplit)deserializer.deserialize(inputSplit);
- }
-
- private Class<?> readClass(DataInput in) throws IOException {
- String className = Text.readString(in);
- try {
- return conf.getClassByName(className);
- } catch (ClassNotFoundException e) {
- throw new RuntimeException("readObject can't find class", e);
- }
- }
-
- @SuppressWarnings("unchecked")
- public void write(DataOutput out) throws IOException {
- Text.writeString(out, inputSplitClass.getName());
- Text.writeString(out, inputFormatClass.getName());
- Text.writeString(out, mapperClass.getName());
- SerializationFactory factory = new SerializationFactory(conf);
- Serializer serializer =
- factory.getSerializer(inputSplitClass);
- serializer.open((DataOutputStream)out);
- serializer.serialize(inputSplit);
- }
-
- public Configuration getConf() {
- return conf;
- }
-
- public void setConf(Configuration conf) {
- this.conf = conf;
- }
-
- }
InputFormat:
通过使用InputFormat,MapReduce框架可以做到:
1.验证作业输入的正确性。
2.将输入文件切分成逻辑的InputSplits,一个InputSplit将被分配给一个单独的MapTask。
3.提供RecordReader的实现,这个RecordReader会从InputSplit中正确读出一条一条的K-V对供Mapper使用。
- public abstract class InputFormat<K, V> {
-
-
- public abstract
- List<InputSplit> getSplits(JobContext context
- ) throws IOException, InterruptedException;
-
-
- public abstract
- RecordReader<K,V> createRecordReader(InputSplit split,
- TaskAttemptContext context
- ) throws IOException,
- InterruptedException;
-
- }
上面是InputFormat的源码,getSplits()是用来获取由输入文件计算出来的InputSplits,我们在后面会看到计算InputSplit的时候会考虑到输入文件是否可分割、文件存储时分块的大小和文件大小等因素;而createRecordReader()提供了前面第三点所说的RecordReader的实现,以将K-V对从InputSplit中正确读取出来,比如LineRecordReader就以偏移值为key,一行数据为value的形式读取分片的。
FileInputFormat:
PathFilter被用来进行文件刷选,这样我们就可以控制哪些文件要被作为输入,哪些不作为输入,PathFIlter有一个accept(Path)方法,当接收的Path要被包含进来,就返回true,否则返回false。可以通过设置mapred.input.pathFIlter.class来设置用户自定义的PathFilter。
- public interface PathFilter {
-
- boolean accept(Path path);
- }
FileInputFormat是InputFormat的子类,它包含了一个MultiPathFilter,这个MultiPathFilter由一个过滤隐藏文件(名字前缀'-'或'.')的PathFilter和一些可能存在的用户自定义的PathFilter组成,MultiPathFilter会在listStatus()方法中使用,而listStatus()方法又被getSplits()方法用来获取输入文件,也就是说实现了在获取输入分片前进行文件过滤。
- private static class MultiPathFilter implements PathFilter {
- private List<PathFilter> filters;
-
- public MultiPathFilter() {
- this.filters = new ArrayList<PathFilter>();
- }
-
- public MultiPathFilter(List<PathFilter> filters) {
- this.filters = filters;
- }
-
- public void add(PathFilter one) {
- filters.add(one);
- }
-
- public boolean accept(Path path) {
- for (PathFilter filter : filters) {
- if (filter.accept(path)) {
- return true;
- }
- }
- return false;
- }
-
- public String toString() {
- StringBuffer buf = new StringBuffer();
- buf.append("[");
- for (PathFilter f: filters) {
- buf.append(f);
- buf.append(",");
- }
- buf.append("]");
- return buf.toString();
- }
- }
这些PathFilter会在listStatus()方法中用到,listStatus()是用来获取输入数据列表的。
下面是FileInputFormat的getSplits()方法,它首先得到分片的最小值minSize和最大值maxSize,它们会被用来计算分片的大小。可以通过设置mapred.min.split.size和mapred.max.split.size来设置。splits集合可以用来存储计算得到的输入分片,files则存储作为由listStatus()获取的输入文件列表。然后对于每个输入文件,判断是否可以分割,通过computeSplits()计算出分片大小splitSize,计算方法是:Math.max(minSize,Math.min(maxSize,blockSize));也就是保证在minSize和maxSize之间,且如果minSize<=blockSize<=maxSize,则设blockSize。然后根据这个splitSize计算出每个文件的InputSplit集合,然后加入到列表splits集合中。注意到我们生成InputSplit的时候按上面说的使用文件路径,分片起始位置,分片大小和存放这个文件爱你的hosts列表来创建。最后我们还设置了输入文件数量:mapreduce.input.num.files。
- public List<InputSplit> getSplits(JobContext job
- ) throws IOException {
- long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));
- long maxSize = getMaxSplitSize(job);
-
-
- List<InputSplit> splits = new ArrayList<InputSplit>();
- List<FileStatus>files = listStatus(job);
- for (FileStatus file: files) {
- Path path = file.getPath();
- FileSystem fs = path.getFileSystem(job.getConfiguration());
- long length = file.getLen();
- BlockLocation[] blkLocations = fs.getFileBlockLocations(file, 0, length);
- if ((length != 0) && isSplitable(job, path)) {
- long blockSize = file.getBlockSize();
- long splitSize = computeSplitSize(blockSize, minSize, maxSize);
-
- long bytesRemaining = length;
- while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
- int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
- splits.add(new FileSplit(path, length-bytesRemaining, splitSize,
- blkLocations[blkIndex].getHosts()));
- bytesRemaining -= splitSize;
- }
-
- if (bytesRemaining != 0) {
- splits.add(new FileSplit(path, length-bytesRemaining, bytesRemaining,
- blkLocations[blkLocations.length-1].getHosts()));
- }
- } else if (length != 0) {
- splits.add(new FileSplit(path, 0, length, blkLocations[0].getHosts()));
- } else {
-
- splits.add(new FileSplit(path, 0, length, new String[0]));
- }
- }
-
-
- job.getConfiguration().setLong(NUM_INPUT_FILES, files.size());
-
- LOG.debug("Total # of splits: " + splits.size());
- return splits;
- }
就这样,我们利用FileInputFormat的getSplits()方法,我们就计算出了我们作业的所有输入分片了。
那这些计算出来的分片是怎么被map读出来的呢?就是InputFormat中的另一个方法createRecordReader(),FileInputFormat并没有对这个方法做具体的要求,而是交给子类自行去实现它。
RecordReader:
RecordReader是用来从一个输入分片中读取一个一个的K-V对的抽象类,我们可以将其看做是在InputSplit上的迭代器。我们从类图中可以看到它的一些方法,最主要的方法就是nextKeyValue()方法,由它获取分片上的下一个K-V对。
我们呢再来看看RecordReader的一个子类:LineRecordReader,这也是我们用的最多的。
LineRecordReader由一个FileSplit构造出来,start是这个FileSplit的起始位置,pos是当前读取分片的位置,end是分片结束位置,in是打开一个读取这个分片的输入流,它是使用这个FIleSplit对应的文件名来打开的。key和value则分别是每次读取的K-V对。然后我们还看到可以利用getProgress()来跟踪读取分片的进度,这个函数就是根据已经读取的K-V对占总K-V对的比例显示进度的。
- public class LineRecordReader extends RecordReader<LongWritable, Text> {
- private static final Log LOG = LogFactory.getLog(LineRecordReader.class);
-
- private CompressionCodecFactory compressionCodecs = null;
- private long start;
- private long pos;
- private long end;
- private LineReader in;
- private int maxLineLength;
- private LongWritable key = null;
- private Text value = null;
- private Seekable filePosition;
- private CompressionCodec codec;
- private Decompressor decompressor;
-
- public void initialize(InputSplit genericSplit,
- TaskAttemptContext context) throws IOException {
- FileSplit split = (FileSplit) genericSplit;
- Configuration job = context.getConfiguration();
- this.maxLineLength = job.getInt("mapred.linerecordreader.maxlength",
- Integer.MAX_VALUE);
- start = split.getStart();
- end = start + split.getLength();
- final Path file = split.getPath();
- compressionCodecs = new CompressionCodecFactory(job);
- codec = compressionCodecs.getCodec(file);
-
-
- FileSystem fs = file.getFileSystem(job);
- FSDataInputStream fileIn = fs.open(split.getPath());
-
- if (isCompressedInput()) {
- decompressor = CodecPool.getDecompressor(codec);
- if (codec instanceof SplittableCompressionCodec) {
- final SplitCompressionInputStream cIn =
- ((SplittableCompressionCodec)codec).createInputStream(
- fileIn, decompressor, start, end,
- SplittableCompressionCodec.READ_MODE.BYBLOCK);
- in = new LineReader(cIn, job);
- start = cIn.getAdjustedStart();
- end = cIn.getAdjustedEnd();
- filePosition = cIn;
- } else {
- in = new LineReader(codec.createInputStream(fileIn, decompressor),
- job);
- filePosition = fileIn;
- }
- } else {
- fileIn.seek(start);
- in = new LineReader(fileIn, job);
- filePosition = fileIn;
- }
-
-
-
- if (start != 0) {
- start += in.readLine(new Text(), 0, maxBytesToConsume(start));
- }
- this.pos = start;
- }
-
- private boolean isCompressedInput() {
- return (codec != null);
- }
-
- private int maxBytesToConsume(long pos) {
- return isCompressedInput()
- ? Integer.MAX_VALUE
- : (int) Math.min(Integer.MAX_VALUE, end - pos);
- }
-
- private long getFilePosition() throws IOException {
- long retVal;
- if (isCompressedInput() && null != filePosition) {
- retVal = filePosition.getPos();
- } else {
- retVal = pos;
- }
- return retVal;
- }
-
- public boolean nextKeyValue() throws IOException {
- if (key == null) {
- key = new LongWritable();
- }
- key.set(pos);
- if (value == null) {
- value = new Text();
- }
- int newSize = 0;
-
-
- while (getFilePosition() <= end) {
- newSize = in.readLine(value, maxLineLength,
- Math.max(maxBytesToConsume(pos), maxLineLength));
- if (newSize == 0) {
- break;
- }
- pos += newSize;
- if (newSize < maxLineLength) {
- break;
- }
-
-
- LOG.info("Skipped line of size " + newSize + " at pos " +
- (pos - newSize));
- }
- if (newSize == 0) {
- key = null;
- value = null;
- return false;
- } else {
- return true;
- }
- }
-
- @Override
- public LongWritable getCurrentKey() {
- return key;
- }
-
- @Override
- public Text getCurrentValue() {
- return value;
- }
-
-
- public float getProgress() throws IOException {
- if (start == end) {
- return 0.0f;
- } else {
- return Math.min(1.0f,
- (getFilePosition() - start) / (float)(end - start));
- }
- }
-
- public synchronized void close() throws IOException {
- try {
- if (in != null) {
- in.close();
- }
- } finally {
- if (decompressor != null) {
- CodecPool.returnDecompressor(decompressor);
- }
- }
- }
- }
其它的一些RecordReader如SequenceFileRecordReader,CombineFileRecordReader则对应不同的InputFormat。
下面继续看看这些RecordReader是如何被MapReduce框架使用的。
首先看看Mapper类的源码:
- public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
-
- public class Context
- extends MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
- public Context(Configuration conf, TaskAttemptID taskid,
- RecordReader<KEYIN,VALUEIN> reader,
- RecordWriter<KEYOUT,VALUEOUT> writer,
- OutputCommitter committer,
- StatusReporter reporter,
- InputSplit split) throws IOException, InterruptedException {
- super(conf, taskid, reader, writer, committer, reporter, split);
- }
- }
-
-
- protected void setup(Context context
- ) throws IOException, InterruptedException {
-
- }
-
-
- @SuppressWarnings("unchecked")
- protected void map(KEYIN key, VALUEIN value,
- Context context) throws IOException, InterruptedException {
- context.write((KEYOUT) key, (VALUEOUT) value);
- }
-
-
- protected void cleanup(Context context
- ) throws IOException, InterruptedException {
-
- }
-
-
- public void run(Context context) throws IOException, InterruptedException {
- setup(context);
- while (context.nextKeyValue()) {
- map(context.getCurrentKey(), context.getCurrentValue(), context);
- }
- cleanup(context);
- }
- }
我们写MapReduce程序的时候,我们写的Mapper类都要继承这个Mapper类,通常我们会重写map()方法,map()每次接受一个K-V对,然后对这个K-V对进行处理,再分发出处理后的数据。我们也可能重写setUp()方法以对这个MapTask进行一些预处理,比如创建一个List之类集合,我们也可能重写cleanUp()方法做一些处理后的工作,当然我们也可能在cleanUp()中写出K-V对。举个例子就是:InputSplit的数据是一些整数,然后我们要在Mapper中计算他们的和。我们可以先设置个sum属性,然后map()函数处理一个K-V对就是将其加到sum上,最后在cleanUp()函数中调用context.write(key,value)。
最后我们看看Mapper.class中的run()方法,它相当于MapTask的驱动,我们可以看到run()方法首先调用setUp()方法进行初始化操作,然后遍历每个通过context.nextKeyValue()获取的K-V对,调用map()函数进行处理,最后调用cleanUp()方法做相关处理。
我们看看Mapper.class中的Context类,它继承自MapContext,使用了一个RecordReader进行构造。下面我们看看MapContext这个类的源码:
- public class MapContext<KEYIN, VALUEIN, KEYOUT, VALUEOUT> extends TaskInputOutputContext<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
- private RecordReader<KEYIN, VALUEIN> reader;
- private InputSplit split;
-
- public MapContext(Configuration conf, TaskAttemptID taskid, RecordReader<KEYIN, VALUEIN> reader, RecordWriter<KEYOUT, VALUEOUT> writer,
- OutputCommitter committer, StatusReporter reporter, InputSplit split) {
- super(conf, taskid, writer, committer, reporter);
- this.reader = reader;
- this.split = split;
- }
-
-
- public InputSplit getInputSplit() {
- return split;
- }
-
- @Override
- public KEYIN getCurrentKey() throws IOException, InterruptedException {
- return reader.getCurrentKey();
- }
-
- @Override
- public VALUEIN getCurrentValue() throws IOException, InterruptedException {
- return reader.getCurrentValue();
- }
-
- @Override
- public boolean nextKeyValue() throws IOException, InterruptedException {
- return reader.nextKeyValue();
- }
-
- }
我们可以看到MapContext直接是使用传入的RecordReader来进行K-V对的读取。
到现在,我们已经知道输入文件是如何被读取、过滤、分片、读出K-V对,然后交给我们的Mapper类来处理的了。
最后,我们来看看FIleInputFormat的几个子类。
TextInputFormat:
TextInputFormat是FileInputFormat的子类,其createRecordReader()方法返回的就是LineRecordReader。
- public class TextInputFormat extends FileInputFormat<LongWritable, Text> {
-
- @Override
- public RecordReader<LongWritable, Text>
- createRecordReader(InputSplit split,
- TaskAttemptContext context) {
- return new LineRecordReader();
- }
-
- @Override
- protected boolean isSplitable(JobContext context, Path file) {
- CompressionCodec codec =
- new CompressionCodecFactory(context.getConfiguration()).getCodec(file);
- if (null == codec) {
- return true;
- }
- return codec instanceof SplittableCompressionCodec;
- }
-
- }
我们还看到isSplitable()方法,当文件使用压缩的形式,这个文件就不可分割,否则就读取不正确的数据了。这从某种程度上将影响分片的计算。有时我们希望一个文件只被一个Mapper处理的时候,我们就可以重写isSplitable()方法,告诉MapReduce框架,我哪些文件可以分割,哪些文件不能分割而只能作为一个分片。
NLineInputFormat:
NLineInputFormat也是FileInputFormat的子类,与名字一致,它是根据行数来划分InputSplits而不是像TextInputFormat那样依赖分片大小和行的长度的。也就是说,TextInputFormat当一行很长或分片比较小时,获取的分片可能只包含很少的K-V对,这样一个MapTask处理的K-V对就很少,这可能很不理想。因此我们可以使用NLineInputFormat来控制一个MapTask处理的K-V对,这是通过分割InputSplit时,按行数来分割的方法来实现的,这我们在代码中可以看出来。我们设置mapreduce.input.lineinputformat.linespermap来设置这个行数,源码如下:
- @InterfaceAudience.Public
- @InterfaceStability.Stable
- public class NLineInputFormat extends FileInputFormat<LongWritable, Text> {
- public static final String LINES_PER_MAP =
- "mapreduce.input.lineinputformat.linespermap";
-
- public RecordReader<LongWritable, Text> createRecordReader(
- InputSplit genericSplit, TaskAttemptContext context)
- throws IOException {
- context.setStatus(genericSplit.toString());
- return new LineRecordReader();
- }
-
-
- public List<InputSplit> getSplits(JobContext job)
- throws IOException {
- List<InputSplit> splits = new ArrayList<InputSplit>();
- int numLinesPerSplit = getNumLinesPerSplit(job);
- for (FileStatus status : listStatus(job)) {
- splits.addAll(getSplitsForFile(status,
- job.getConfiguration(), numLinesPerSplit));
- }
- return splits;
- }
-
- public static List<FileSplit> getSplitsForFile(FileStatus status,
- Configuration conf, int numLinesPerSplit) throws IOException {
- List<FileSplit> splits = new ArrayList<FileSplit> ();
- Path fileName = status.getPath();
- if (status.isDir()) {
- throw new IOException("Not a file: " + fileName);
- }
- FileSystem fs = fileName.getFileSystem(conf);
- LineReader lr = null;
- try {
- FSDataInputStream in = fs.open(fileName);
- lr = new LineReader(in, conf);
- Text line = new Text();
- int numLines = 0;
- long begin = 0;
- long length = 0;
- int num = -1;
- while ((num = lr.readLine(line)) > 0) {
- numLines++;
- length += num;
- if (numLines == numLinesPerSplit) {
- splits.add(createFileSplit(fileName, begin, length));
- begin += length;
- length = 0;
- numLines = 0;
- }
- }
- if (numLines != 0) {
- splits.add(createFileSplit(fileName, begin, length));
- }
- } finally {
- if (lr != null) {
- lr.close();
- }
- }
- return splits;
- }
-
-
- protected static FileSplit createFileSplit(Path fileName, long begin, long length) {
- return (begin == 0)
- ? new FileSplit(fileName, begin, length - 1, new String[] {})
- : new FileSplit(fileName, begin - 1, length, new String[] {});
- }
-
-
- public static void setNumLinesPerSplit(Job job, int numLines) {
- job.getConfiguration().setInt(LINES_PER_MAP, numLines);
- }
-
-
- public static int getNumLinesPerSplit(JobContext job) {
- return job.getConfiguration().getInt(LINES_PER_MAP, 1);
- }
- }