1 环境说明
VM 模拟3台MYSQL 5.6 服务器
VM1 192.168.31.187:3307
VM2 192.168.31.212:3307
VM3 192.168.31.150: 3307
MYCAT 1.5 服务部署在宿主机上
MYCAT 192.168.31.207 :8806【SQL执行端口】 / 9066【管理端口】
2 应用场景
2.0 MYCAT配置
schema.xml
<schema name="TESTDB" checkSQLschema="false" sqlMaxLimit="100">
<table name="t_demo_travel_record" dataNode="dn1,dn2,dn3" rule="auto-sharding-long" />
<table name="t_demo_travel_record_child" dataNode="dn1,dn2,dn3" rule="auto-sharding-long" />
</schema>
<dataNode name="dn1" dataHost="vm1" database="test" />
<dataNode name="dn2" dataHost="vm2" database="test" />
<dataNode name="dn3" dataHost="vm3" database="test" />
<dataHost name="vm1" maxCon="1000" minCon="10" balance="0"
writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<writeHost host="vm1M1" url="192.168.31.187:3307" user="root" password="root123"></writeHost>
</dataHost>
<dataHost name="vm2" maxCon="1000" minCon="10" balance="0"
writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<writeHost host="vm2M1" url="192.168.31.212:3307" user="root" password="root123"></writeHost>
</dataHost>
<dataHost name="vm3" maxCon="1000" minCon="10" balance="0"
writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<writeHost host="vm3M1" url="192.168.31.150:3307" user="root" password="root123"></writeHost>
</dataHost>
rule.xml
<tableRule name="auto-sharding-long">
<rule>
<columns>id</columns>
<algorithm>rang-long</algorithm>
</rule>
</tableRule>
<function name="rang-long"
class="org.opencloudb.route.function.AutoPartitionByLong">
<property name="mapFile">autopartition-long.txt</property>
<property name="defaultNode">0</property>
</function>
autopartition-long.txt
# range start-end ,data node index
# K=1000,M=10000.
0-500M=0
500M-1000M=1
1000M-1500M=2
2.1 模拟在3个数据库上保存了200多万条记录,验证下数据库查询的响应。
物理库上数据情况
VM1 192.168.31.187:3307 保存了74.8万条记录
mysql> SELECT min(id),max(id),count(1) FROM test.t_demo_travel_record;
+---------+---------+----------+
| min(id) | max(id) | count(1) |
+---------+---------+----------+
| 10000 | 5000000 | 748002 |
+---------+---------+----------+
1 row in set (0.16 sec)
VM2 192.168.31.212:3307 保存了74.9万条记录
mysql> SELECT min(id),max(id),count(1) FROM test.t_demo_travel_record;
+---------+----------+----------+
| min(id) | max(id) | count(1) |
+---------+----------+----------+
| 5000001 | 10000000 | 749500 |
+---------+----------+----------+
1 row in set (0.17 sec)
VM3 192.168.31.150: 3307 比VM2少一条记录
mysql> SELECT min(id),max(id),count(1) FROM test.t_demo_travel_record;
+----------+----------+----------+
| min(id) | max(id) | count(1) |
+----------+----------+----------+
| 10000001 | 14991498 | 749499 |
+----------+----------+----------+
1 row in set (0.17 sec)
MYCAT 192.168.31.207: 8806 一共224.7万条记录,最大记录从 VM1 结点获取,最大记录从 VM3 结点获取
mysql> SELECT min(id),max(id),count(1) FROM t_demo_travel_record;
+-------+----------+---------+
| MIN0 | MAX1 | COUNT2 |
+-------+----------+---------+
| 10000 | 14991498 | 2247001 |
+-------+----------+---------+
1 row in set (0.31 sec)
在MYCAT中进行不指定排序的分页查询 ,从第100万条记录开始取100,浩时1.5秒,好久~~
mysql> select * from t_demo_travel_record where id between 4999980 and 14999980 limit 1000000,100;
+----------+------------------+
| id | context |
+----------+------------------+
| 13341025 | context_13341025 |
| 13341026 | context_13341026 |
| 13341027 | context_13341027 |
| 13341028 | context_13341028 |
| 13341029 | context_13341029 |
....
| 8320686 | context_8320686 |
| 8320687 | context_8320687 |
| 8320688 | context_8320688 |
| 8320689 | context_8320689 |
+----------+------------------+
100 rows in set (1.50 sec)
看下日志,MYCAT是把 limit 1000000,100 改为 limit 0 , 1000100 往物理库中发送,速度一个字:不慢才怪。
02/02 23:41:47.958 DEBUG [$_NIOREACTOR-2-RW] (ServerQueryHandler.java:56) -ServerConnection [id=12, schema=TESTDB, host=192.168.31.207, user=test,txIsolation=3, autocommit=true, schema=TESTDB]select * from t_demo_travel_record where id between 4999980 and 14999980 limit 1000000,100
02/02 23:41:47.958 DEBUG [$_NIOREACTOR-2-RW] (EnchachePool.java:70) -SQLRouteCache hit cache ,key:TESTDBselect * from t_demo_travel_record where id between 4999980 and 14999980 limit 1000000,100
02/02 23:41:47.958 DEBUG [$_NIOREACTOR-2-RW] (NonBlockingSession.java:113) -ServerConnection [id=12, schema=TESTDB, host=192.168.31.207, user=test,txIsolation=3, autocommit=true, schema=TESTDB]select * from t_demo_travel_record where id between 4999980 and 14999980 limit 1000000,100, route={
1 -> dn1{SELECT *
FROM t_demo_travel_record
WHERE id BETWEEN 4999980 AND 14999980
LIMIT 0, 1000100}
2 -> dn2{SELECT *
FROM t_demo_travel_record
WHERE id BETWEEN 4999980 AND 14999980
LIMIT 0, 1000100}
3 -> dn3{SELECT *
FROM t_demo_travel_record
WHERE id BETWEEN 4999980 AND 14999980
LIMIT 0, 1000100}
} rrs
02/02 23:41:47.958 DEBUG [$_NIOREACTOR-2-RW] (MultiNodeQueryHandler.java:82) -execute mutinode query select * from t_demo_travel_record where id between 4999980 and 14999980 limit 1000000,100
02/02 23:41:47.958 DEBUG [$_NIOREACTOR-2-RW] (MultiNodeQueryHandler.java:97) -has data merge logic
02/02 23:41:47.961 DEBUG [$_NIOREACTOR-3-RW] (MultiNodeQueryHandler.java:241) -on row end reseponse MySQLConnection [id=19, lastTime=1454427707947, user=root, schema=test, old shema=test, borrowed=true, fromSlaveDB=false, threadId=36, charset=utf8, txIsolation=3, autocommit=true, attachment=dn1{SELECT *
FROM t_demo_travel_record
WHERE id BETWEEN 4999980 AND 14999980
LIMIT 0, 1000100}, respHandler=org.opencloudb.mysql.nio.handler.MultiNodeQueryHandler@24e67429, host=192.168.31.187, port=3307, statusSync=null, writeQueue=0, modifiedSQLExecuted=false]
这里进行数据合并,好在使用了auto-sharding-long模式,如果是sharding-by-mod模式的话,数据是非连续离散在不同数据结点中,那合并起来就更慢了。
在大数据量分片分页查询时,MYCAT 可能会存在效率与内存占用问题。
02/02 23:41:49.392 DEBUG [BusinessExecutor6] (DataMergeService.java:296) -prepare mpp merge result for select * from t_demo_travel_record where id between 4999980 and 14999980 limit 1000000,100
02/02 23:41:49.393 DEBUG [BusinessExecutor6] (MultiNodeQueryHandler.java:324) -last packet id:105