每个网络应用都是基于客户端一服务器模型的。一个应用是由一个服务器进程和一个或者多个客户端进程组成。服务器管理某种资源,并且通过操作这种资源来为它的客户端提供某种服务。
客户端一服务器模型中的基本操作是事务,由四步组成:
当一个客户端需要服务时,它向服务器发送一个请求,发起一个事务。
服务器收到请求后,解释它,并以适当的方式操作它的资源。
服务器给客户端发送一个响应,并等待下一个请求。
客户端收到响应并处理它。
客户端和服务器通常运行在不同的主机上,并且通过计算机网络的硬件和软件资源来通信。
使用一些电缆和叫做网桥 (bridge) 的小盒子,多个以太网段可以连接成较大的局域网,称为桥接以太网 (bridged Ethernet)
桥接以太网:
网桥比集线器更充分地利用了电缆带宽。
多个不兼容的局域网可以通过叫做路由器 (router)的特殊计算机连接起来,组成一个internet(互联网络)。
Internet 和 internet 我们总是用小写字母的 internet 描述一般概念, 而用大写字母的Internet 来描述一种具体的实现,也就是所谓的全球 IP 因特网。
每台因特网主机都运行实现 TCP/IP 协议 (Transmission Control Protocol/Internet Protocol,传输控制协议/互联网络协议)的软件,几乎每个现代计算机系统都支持这个协议。
因特网的客户端和服务器混合使用套接字接口函数和 Unix I/O 函数来进行通信。套接字函数典型地是作为会陷入内核的系统调用来实现 的,并调用各种内核模式的 TCP/IP 函数。
一个 IP 地址就是一个 32 位无符号整数。
htonl 函数将32 位整数由主机字节顺序转换为网络字节顺序。
ntohl 函数将 32 位整数从网络宇节顺序转换为主机字节。
htons和 ntohs 函数为 16 位的整数执行相应的转换。
IP 地址通常是以一种称为点分十进制表示法来表示的。
"n" 表示的是网络(network)。"a" 表示应用(application)。而 "to" 表示转换。
因特网客户端和服务器互相通信时使用的是 IP 地址。
子树称为子域 (subdomain)。 层次结构中的第一层是 一个未命名的根节点。下一层是一组一级域名 (first-level domain name)。
常见的第一层域名包括 com、 edu、 gov、org 和 net。
下一层是二级 (second-level) 域名,例如 cmu. edu
一旦一个组织得到了一个二级域名,那么它就可以在这个子域中创建任何新的域名了。
因特网定义了域名集合和 IP 地址集合之间的映射。
因特网应用程序通过调用 gethostbyname 和 gethostbyaddr 函数,从 DNS 数据库中检索任意的主机条目。
最简单的情况下,一个域名和一个 IP 地址之间是一一映射的
某些情况下,多个域名可以映射为同一个 IP 地址
最通常的情况下,多个域名可以映射到多个 IP 地址
某些合法的域名没有映射到任何 IP 地址
因特网客户端和服务器通过在连接上发送和接收字节流来通信。
连接是点对点的。
从数据可以同时双向流动的角度来说,它是全双工的。可靠的。
Web 服务器通常使用端口 80,而电子邮件服务器使用端口 25。
套接字接口 (socket interface) 是一组函数,它们和 Unix I/O 函数结合起来,用以创建网络 应用。
客户端和服务器使用 socket 函数来创建一个套接字描述符
open_clientfd 函数和运行在主机 hostname 上的服务器建立一个连接,并在知名端口 port 上监听连接请求。它返回一个打开的套接宇描述符,该描述符准备好了,可以用 Unix I/O 函数做输入和输出。
bind、 listen 和 accept 被服务器用来和客户端建立连接。
bind 函数告诉内核将 my_addr中的服务器套接字地址和套接字描述符 sockfd 联系起来。参数 addrlen 就是 sizeof(sockaddr_in) 。
客户端是发起连接请求的主动实体。服务器是等待来自客户端的连接请求的被动实体。默认情况下,内核会认为 socket 函数创建的描述符对应于主动套接字 (active socket),它存在 于一个连接的客户端。
listen 函数将 sockfd 从一个主动套接字转化为一个监听套接字 (listening socket),该套接字可以接受来自客户端的连接请求。
socket、 bind 和 listen 函数结合成一个叫做。open_listenfd 的辅助函数
accept 函数等待来自客户端的连接请求到达侦听描述符 listenfd,然后在 addr 中填写客户端的套接字地址,并返回一个巳连接描述符 (connected descriptor),这个描述符可被用来利用 Unix I/O 函数与客户端通信。
监听描述符是作为客户端连接请求的一个端点。
Web 客户端和服务器之间的交互用的是一个基于文本的应用级协议,叫做 HTTP (Hypertext Transfer Protocol,超文本传输协议). HTTP 是一个简单的协议。一个 Web 客户端(即浏览器) 打开一个到服务器的因特网连接,并且请求某些内容。服务器响应所请求的内容,然后关闭连接。浏览器读取这些内容,并把它显示在屏幕上。
每条由 Web 服务器返回的内容都是和它管理的某个文件相关联的。这些文件中的每一个都有一个唯一的名字,叫做 URL (Universal Resource Locator,通用资源定位符)。
因为 HTTP 是基于在因特网连接上传送的文本行的,我们可以使用 Unix 的TELNET程序来和因特网上的任何 Web 服务器执行事务。
一个 HTTP 请求的组成是这样的:一个请求行 (request line) (第 5 行),后面跟随零个或更多个请求报头 (request header) (第 6 行),再跟随一个空的文本行来终止报头列表
HTTP 支持许多不同的方法,包括 GET、 POST、 OPTIONS、 HEAD、 PUT、 DELETE 和 TRACE。
一个 HTTP 响应的组成是这样的:一个响应行 (response line) (第 8 行)后面跟随着零个或更多的响应报头 (response header) (第 9 ~ 13 行), 再跟随一个终止报头的空行(第 14 行),再跟随一个响应主体 (response body)
状态码 (status code) 是一个三位的正整数, 指明对请求的处理。状态消息 (status message) 给出与错误代码等价的英文描述。
每个逻辑控制流是一个进程,由内核进行调度,进程有独立的虚拟地址空间
逻辑流被模型化为状态机,所有流共享同一个地址空间
运行在单一进程上下文中的逻辑流,由内核进行调度,共享同一个虚拟地址空间
进程。每个逻辑控制流都是一个进程,由内核来调度和维护。控制流使用显式的进程间通信(IPC)机制。
I/O多路复用。应用程序在一个进程的上下文中显式地调度他们自己的逻辑流。所有的流都共享同一个地址空间。
线程。线程是运行在一个单一进程上下文中的逻辑流,由内核进行调度。
12.1 基于进程的并发编程
使用SIGCHLD处理程序来回收僵死子进程的资源。
父进程必须关闭他们各自的connfd拷贝(已连接的描述符),避免存储器泄露。
因为套接字的文件表表项中的引用计数,直到父子进程的connfd都关闭了,到客户端的连接才会终止。
1.父进程需要关闭它的已连接描述符的拷贝(子进程也需要关闭)
2.必须要包括一个SIGCHLD处理程序来回收僵死子进程的资源
3.父子进程之间共享文件表,但是不共享用户地址空间。
优点:防止虚拟存储器被错误覆盖
缺点:开销高,共享状态信息才需要IPC机制
使用select函数,要求内核挂起进程,只有在一个或多个I/O事件发生后,才将控制返回给应用程序。
int select(int n,fd_set *fdset,NULL,NULL,NULL); 返回已经准备好的描述符的非0的个数,若出错则为-1。
select函数处理类型为fd_set的集合,叫做描述符集合,看做一个大小为n位的向量:
bn-1,......,b1,b0
分配他们
将一个此种类型的变量赋值给另一个变量
用FD_ZERO,FD_SET,FD_CLR和FD_ISSET宏指令来修改和检查他们。
I/O多路复用可以用作事件并发驱动程序的基础。
状态机:一组状态、输入事件、输出事件和转移。
自循环:同一输入和输出状态之间的转移。
相比基于进程的设计给了程序员更多的对进程行为的控制,运行在单一进程上下文中,每个逻辑流都能访问全部的地址空间,在流之间共享数据很容易。
编码复杂,随着并发粒度的减小,复杂性还会上升。粒度:每个逻辑流每个时间片执行的指令数量。
每个进程开始生命周期时都是单一线程(主线程),在某一时刻创建一个对等线程,从此开始并发地运行,最后,因为主线程执行一个慢速系统调用,或者被中断,控制就会通过上下文切换传递到对等线程。
Posix线程是C语言中处理线程的一个标准接口,允许程序创建、杀死和回收线程,与对等线程安全的共享数据。
线程的代码和本地数据被封装在一个线程例程中,
线程通过调用pthread_create来创建其他线程。
int pthread_create(pthread_t *tid,pthread_attr_t *attr,func *f,void *arg); 成功则返回0,出错则为非零
当函数返回时,参数tid包含新创建的线程的ID,新线程可以通过调用pthread_self函数来获得自己的线程ID。
pthread_t pthread_self(void);返回调用者的线程ID。
一个线程是通过以下方式之一来终止的。
当顶层的线程例程返回时,线程会隐式地终止。
通过调用pthread_exit函数,线程会显式地终止
void pthread_exit(void *thread_return);
线程通过调用pthread_join函数等待其他线程终止。
int pthread_join(pthread_t tid,void **thread_return); 成功则返回0,出错则为非零
在任何一个时间点上,线程是可结合或可分离的。一个可结合的线程能够被其他线程收回其资源和杀死,在被回收之前,它的存储器资源是没有被释放的。分离的线程则相反,资源在其终止时自动释放。
int pthread_deacth(pthread_t tid); 成功则返回0,出错则为非零
pthread_once允许初始化与线程例程相关的状态。
pthread_once_t once_control=PTHREAD_ONCE_INIT;
int pthread_once(pthread_once_t *once_control,void (*init_routine)(void)); 总是返回0
一个变量是共享的,当且仅当多个线程引用这个变量的某个实例。
一、线程存储器模型
每个线程都有自己独立的线程上下文,包括一个唯一的整数线程ID,栈、栈指针、程序计数器、通用目的寄存器和条件码。
寄存器是从不共享的,而虚拟存储器总是共享的。
各自独立的线程栈被保存在虚拟地址空间的栈区域中,并且通常是被相应的线程独立地访问的。
二、将变量映射到存储器
全局变量:定义在函数之外的变量
本地自动变量:定义在函数内部但是没有static属性的变量。
三、共享变量
变量v是共享的——当且仅当它的一个实例被一个以上的线程引用。
进度图是将n个并发线程的执行模型化为一条n维笛卡尔空间中的轨迹线,原点对应于没有任何线程完成一条指令的初始状态。
当n=2时,状态比较简单,是比较熟悉的二维坐标图,横纵坐标各代表一个线程,而转换被表示为有向边。
而一个程序的执行历史被模型化为状态空间中的一条轨迹线。
P(s):如果s是非零的,那么P将s减一,并且立即返回。如果s为零,那么就挂起这个线程,直到s变为非零。
V(s):将s加一,如果有任何线程阻塞在P操作等待s变为非零,那么V操作会重启线程中的一个,然后该线程将s减一,完成他的P操作。
信号量不变性:一个正确初始化了的信号量有一个负值。
信号量操作函数:
int sem_init(sem_t *sem,0,unsigned int value);//将信号量初始化为value int sem_wait(sem_t *s);//P(s) int sem_post(sem_t *s);//V(s)
二元信号量(互斥锁):将每个共享变量与一个信号量s联系起来,然后用P(s)(加锁)和V(s)(解锁)操作将相应的临界区包围起来。
禁止区:s<0,因为信号量的不变性,没有实际可行的轨迹线能够直接接触不安全区的部分
并行程序的加速比通常定义为:
Sp=T1/Tp
其中,p为处理器核的数量,T为在p个核上的运行时间
一个线程是安全的,当且仅当被多个并发线程反复的调用时,它会一直产生正确的结果。
四个不相交的线程不安全函数类以及应对措施:
不保护共享变量的函数——用P和V这样的同步操作保护共享变量
保持跨越多个调用的状态的函数——重写,不用任何static数据。
返回指向静态变量的指针的函数——①重写;②使用加锁-拷贝技术。
调用线程不安全函数的函数——参考之前三种
当它们被多个线程调用时,不会引用任何共享数据。
1.显式可重入的:
所有函数参数都是传值传递,没有指针,并且所有的数据引用都是本地的自动栈变量,没有引用静态或全剧变量。
2.隐式可重入的:
调用线程小心的传递指向非共享数据的指针。
三、在线程化的程序中使用已存在的库函数
一句话,就是使用线程不安全函数的可重入版本,名字以_r为后缀结尾。
1.竞争发生的原因:
一个程序的正确性依赖于一个线程要在另一个线程到达y点之前到达它的控制流中的x点。也就是说,程序员假定线程会按照某种特殊的轨迹穿过执行状态空间,忘了一条准则规定:线程化的程序必须对任何可行的轨迹线都正确工作。
2.消除方法:
动态的为每个整数ID分配一个独立的块,并且传递给线程例程一个指向这个块的指针
1.定义
一组线程被阻塞了,等待一个永远也不会为真的条件。
2.解决死锁的方法
进程申请资源时不进行限制,系统定期或者不定期检测是否有死锁发生,当检测到时解决死锁----死锁检测与解除。