POJ 1065. Wooden Sticks 贪心 结构体排序

Wooden Sticks
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 19992   Accepted: 8431

Description

There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows: 
(a) The setup time for the first wooden stick is 1 minute. 
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l <= l' and w <= w'. Otherwise, it will need 1 minute for setup. 
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are ( 9 , 4 ) , ( 2 , 5 ) , ( 1 , 2 ) , ( 5 , 3 ) , and ( 4 , 1 ) , then the minimum setup time should be 2 minutes since there is a sequence of pairs ( 4 , 1 ) , ( 5 , 3 ) , ( 9 , 4 ) , ( 1 , 2 ) , ( 2 , 5 ) .

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1 <= n <= 5000 , that represents the number of wooden sticks in the test case, and the second line contains 2n positive integers l1 , w1 , l2 , w2 ,..., ln , wn , each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.

Output

The output should contain the minimum setup time in minutes, one per line.

Sample Input

3 
5 
4 9 5 2 2 1 3 5 1 4 
3 
2 2 1 1 2 2 
3 
1 3 2 2 3 1 

Sample Output

2
1
3

Source

Taejon 2001

来源: <http://poj.org/problem?id=1065>
 
          这是个贪心算法入门题,题目大意是给定$n$根木棍,以及每根木棍的长度$l$和重量$w$。现在要对它们进行加工,机器调整时间为1分钟,如果加工完一根长$l$重$w$的木棍后,下一根长$l'$重$w'$的木棍满足$l\leq l'$且$w\leq w'$,那么机器就可以继续加工而不需要进入调整时间。否则的话,又需要1分钟的调整时间才能继续加工。求总共最小需要的调整时间。
          如果要求总共最小的时间,那么就要尽量把木棍分成几个序列,使得每个序列中前一个根木棍和后一根木棍的$l$和$w$都相差很小,但又能满足 $l\leq l'$且$w\leq w'$。瞬间想到应该用排序来做,但排序分主次,很遗憾我们并不能同时对两个主元进行排序,必须先对$l$排序,然后对$w$贪心,或者对$w$排序对$l$贪心。
          基本思路是比如我对$l$排序,这样整个序列就是满足 $l\leq l'$的辣,然后遍历这个序列,如果还满足 $w\leq w'$那么太好了,把这个木棍的下标记下来,去找下一个满足条件的木棍,这样找下去就找到第一个子序列辣。再去找剩下的,发现我们不知道哪些是找过的,好,给木棍加一个vis状态,0为未访问1为访问过哒,OK那么每次找子序列呢先找到一个未访问过的木棍,把res加一,然后对于这个序列我贪心的去找下一根木棍并把它的vis记为1。全部木棍被标为1的时候也就找完辣!
 1 #include <stdio.h>
 2 #include <algorithm>
 3 
 4 struct st {
 5     int l, w, vis;
 6     bool operator<(const st&c)const {
 7         return l==c.l?w<c.w:l<c.l;
 8     }
 9 }stick[5001];
10 
11 int n;
12 void read() {
13     scanf("%d", &n);
14     for(int i=0; i<n; i++) {
15         scanf("%d%d", &stick[i].l, &stick[i].w);
16         stick[i].vis = 0;
17     }
18 }
19 
20 void find(int i) {
21     int k = i;
22     for(int j=i+1; j<n; j++)
23         if(!stick[j].vis)
24             if(stick[k].w<=stick[j].w) {
25                 stick[j].vis = 1;
26                 k=j;
27             }
28 }
29 
30 void work() {
31     int res = 0;
32     std::sort(stick, stick+n);
33     for(int i=0; i<n; i++) {
34         if(!stick[i].vis) {
35             stick[i].vis = 1;
36             ++res;
37             find(i);
38         }
39     }
40     printf("%d\n", res);
41 }
42 
43 int main() {
44     int T, n;
45     scanf("%d", &T);
46     while(T--) {
47         read();
48         work();
49     }
50     return 0;
51 }

 

 

By Black Storm(使用为知笔记)

你可能感兴趣的:(POJ 1065. Wooden Sticks 贪心 结构体排序)