Given an array of n integers nums and a target, find the number of index triplets i, j, k with 0 <= i < j < k < n that satisfy the condition nums[i] + nums[j] + nums[k] < target.
For example, given nums = [-2, 0, 1, 3], and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1]
[-2, 0, 3]
Follow up:
Could you solve it in O(n2) runtime?
[分析]
延续3Sum & 3Sum Closest的基本套路,先排序输入数组,固定第一个数后在剩余数组区间中寻找所有满足条件的另外两个数,使用two pointers技巧进行寻找。
关键点是一旦找到 i, j 满足nums[i] + nums[j] + nums[k] < target, 因为数组已排序,则(i, j-1, k),(i, j - 2, k)...(i, i+1, k)均是满足条件的解,这些解总共是 j - i个,而无需一个一个check它们。
此外需注意此题不需要去重处理,一开始画蛇添足进行了去重处理……
很开心思路和leetcode讨论版的最佳思路一致~
public class Solution {
public int threeSumSmaller(int[] nums, int target) {
if (nums == null || nums.length < 3)
return 0;
Arrays.sort(nums);
int counter = 0;
int end = nums.length - 3;
for (int k = 0; k <= end; k++) {
int i = k + 1, j = nums.length - 1;
while (i < j) {
int sum3 = nums[i] + nums[j] + nums[k];
if (sum3 < target) {
counter += j - i;
i++;
} else {
while (i < --j && nums[j] == nums[j + 1]);
}
}
}
return counter;
}
}