Lucene基础篇3 Analyzer

Lucene基础篇3 Analyzer

看了网上的许多对于lucene 分词解析的文章一知半解且代码比较老旧,为透彻、系统、全面、深刻的了解分词是怎么一个过程,通过自定义一个分词器来分析理解。 其中分词部分利用ICTCLAS4j接口实现。结构如下所示:


 

         要实现自定义的ICTCLAS4jAnalyzer必须继承Analyzer类,并重写createComponents方法。直接上代码,看到了吧是从StandardAnalyzer 类中直接复制过来的。把实现ICTCLAS4jICTCLAS4jTokenizer替换就搞定了。

 @Override

    protected TokenStreamComponents createComponents(final String fieldName, final Reader reader) {

      final ICTCLAS4jTokenizer src = new ICTCLAS4jTokenizer(reader);

      //src.setMaxTokenLength(maxTokenLength);

      TokenStream tok = new ICTCLAS4jFilter(matchVersion, src);

      tok = new LowerCaseFilter(matchVersion, tok);

      tok = new StopFilter(matchVersion, tok, STOP_WORDS_SET);

      return new TokenStreamComponents(src, tok) {

        @Override

        protected void setReader(final Reader reader) throws IOException {

          //src.setMaxTokenLength(ICTCLAS4jAnalyzer.this.maxTokenLength);

          super.setReader(reader);

        }

      };

}

 

         ICTCLAS4jTokenizer需重新incrementToken方法,并设定CharTermAttribute(存放词条),OffsetAttribute(存放词条的偏移地址),构造函数中写入需分词的字符串,通过ICTCLAS4j返回分词列表在通过incrementToken实现分词。代码如下:

 

package com.zhy.analysis.ictclas4j;

 

import java.io.FileInputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.Reader;

import java.util.ArrayList;

 

import org.apache.lucene.analysis.Tokenizer;

import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;

import org.apache.lucene.analysis.tokenattributes.OffsetAttribute;

import org.ictclas4j.bean.SegResult;

import org.ictclas4j.segment.SegTag;

 

/**

 * @author brockhong

 *

 */

 

public class ICTCLAS4jTokenizer extends Tokenizer {

 

     private static SegTag segment;

     private StringBuilder sb = new StringBuilder();

     private ArrayList<String> words = new ArrayList<String>();

     private int startOffest = 0;

     private int length = 0;

     private int wordIdx = 0;

 

     public ICTCLAS4jTokenizer(Reader input) {

         super(input);

         char[] buf = new char[8192];

         int d = -1;

         try {

              while ((d = input.read(buf)) != -1) {

                   sb.append(buf, 0, d);

              }

         } catch (IOException e) {

              e.printStackTrace();

         }

         SegResult sr = seg().split(sb.toString());

         words = sr.getWords();

     }

         private static SegTag seg() {

         try {

              if (segment == null) {

                   final InputStream coreDictIn = new FileInputStream(

                            "data/coreDict.dct");

                   final InputStream bigramDictIn = new FileInputStream(

                            "data/BigramDict.dct");

                   final InputStream personTaggerDctIn = new FileInputStream(

                            "data/nr.dct");

                   final InputStream personTaggerCtxIn = new FileInputStream(

                            "data/nr.ctx");

                   final InputStream transPersonTaggerDctIn = new FileInputStream(

                            "data/tr.dct");

                   final InputStream transPersonTaggerCtxIn = new FileInputStream(

                            "data/tr.ctx");

                   final InputStream placeTaggerDctIn = new FileInputStream(

                            "data/ns.dct");

                   final InputStream placeTaggerCtxIn = new FileInputStream(

                            "data/ns.ctx");

                  final InputStream lexTaggerCtxIn = new FileInputStream(

                            "data/lexical.ctx");

                   segment = new SegTag(1, coreDictIn, bigramDictIn,

                            personTaggerDctIn, personTaggerCtxIn,

                            transPersonTaggerDctIn, transPersonTaggerCtxIn,

                            placeTaggerDctIn, placeTaggerCtxIn, lexTaggerCtxIn);

              }

         } catch (Exception e) {

              e.printStackTrace();

         }

         return segment;

     }

     private final CharTermAttribute termAtt = addAttribute(CharTermAttribute.class);

     private final OffsetAttribute offsetAtt = addAttribute(OffsetAttribute.class);

 

     @Override

     public boolean incrementToken() throws IOException {

         while (true) {

              length = 0;

              if (wordIdx < words.size()) {

                   String word = words.get(wordIdx);

 

                   termAtt.copyBuffer(word.toCharArray(), 0, word.length());

                   offsetAtt.setOffset(correctOffset(startOffest),

                            correctOffset(startOffest + length));

                   wordIdx++;

                   startOffest += length;

                   return true;

              } else {

                   return false;

              }

 

         }

     }

}   

 

         ICTCLAS4jFilter 分词过滤器直接使用StandardAnalyzer的过滤器,作为自定义过滤器。

 

ICTCLAS4j改造过程来自网上,修改SegTagoutputResult让其输出的分词输入到列表中。并修复了ICTCLAS4j 在分词中没有时报错代码。

附上analyzer 测试类如下:

 

import java.io.Reader;

import org.apache.lucene.analysis.Analyzer;

import org.apache.lucene.analysis.TokenStream;

import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;

import org.apache.lucene.util.Version;

import java.io.StringReader;

import com.zhy.analysis.ictclas4j.ICTCLAS4jAnalyzer;

/**

 *  @author brockhong

 */

public class Ictclas4janalyzer {

      public static void main(String[] args) throws Exception {

           Analyzer analyzer = new ICTCLAS4jAnalyzer(Version.LUCENE_45);

          

           Reader r = new StringReader("张萌萌是勤奋地漂亮的姑娘,/用一块钱打造经济的航空领域中的航空母舰地点在深圳。ABCD.#$% Hello World!\n又一段文本123 3.0");     

           TokenStream ts=analyzer.tokenStream("fff", r);     

            CharTermAttribute term=ts.addAttribute(CharTermAttribute.class); 

        ts.reset(); 

        while(ts.incrementToken()){ 

            System.out.println(term.toString()); 

        } 

        ts.end(); 

        ts.close(); 

      }

}

Lucene写入测试类:

import java.io.File;

import java.io.IOException;

import org.apache.lucene.analysis.Analyzer;

import org.apache.lucene.analysis.standard.StandardAnalyzer;

import org.apache.lucene.document.Document;

import org.apache.lucene.document.StringField;

import org.apache.lucene.document.TextField;

import org.apache.lucene.document.Field.Store;

import org.apache.lucene.index.IndexWriter;

import org.apache.lucene.index.IndexWriterConfig;

import org.apache.lucene.store.Directory;

import org.apache.lucene.store.FSDirectory;

import org.apache.lucene.util.Version;

import com.zhy.analysis.ictclas4j.ICTCLAS4jAnalyzer;

/** @author brockhong */

public class Testictclas4j {

              public static void main(String[] args) throws Exception {

                            // 设置写入目录(好几种呵呵)

                            Directory d = FSDirectory.open(new File("D:/luceneTest2"));

                            // 设置分词 StandardAnalyzer(会把句子中的字单个分词)

                            Analyzer analyzer = new ICTCLAS4jAnalyzer(Version.LUCENE_45);

                            // 设置索引写入配置

                            IndexWriterConfig config = new IndexWriterConfig(Version.LUCENE_45,          analyzer);

                            IndexWriter indexwriter = new IndexWriter(d, config);

                            Document doc = new Document();

                            doc.add(new StringField("id", "1", Store.YES));

                            doc.add(new StringField("name", "brockhong", Store.YES));

                            doc.add(new TextField("content",

                                                        "张萌萌是勤奋地漂亮的姑娘,/用一块钱打造经济的航空领域中的航空母舰地点在深圳。ABCD.#$% Hello World!\n又一段文本123 3.0",Store.YES));

                            // 写入数据

                            indexwriter.addDocument(doc);

                            // 提交

                            indexwriter.commit();             }}



下载jar/Files/brock/ictclas4j.7z

你可能感兴趣的:(Lucene基础篇3 Analyzer)