Map Task内部实现分析

        上篇我刚刚学习完,Spilt的过程,还算比较简单的了,接下来学习的就是Map操作的过程了,Map和Reduce一样,是整个MapReduce的重要内容,所以,这一篇,我会好好的讲讲里面的内部实现过程。首先要说,MapTask,分为4种,可能这一点上有人就可能知道了,分别是Job-setup Task,Job-cleanup Task,Task-cleanup和Map Task。前面3个都是辅助性质的任务,不是本文分析的重点,我讲的就是里面的最最重要的MapTask。

        MapTask的整个过程分为5个阶段:

Read----->Map------>Collect------->Spill------>Combine

来张时序图,简单明了:

Map Task内部实现分析_第1张图片

在后面的代码分析中,你会看到各自方法的调用过程。

        在分析整个过程之前,得先了解里面的一些内部结构,MapTask类作为Map Task的一个载体,他的类关系如下:

Map Task内部实现分析_第2张图片

我们调用的就是里面的run方法,开启map任务,相应的代码:

/**
   * mapTask主要执行流程
   */
  @Override
  public void run(final JobConf job, final TaskUmbilicalProtocol umbilical) 
    throws IOException, ClassNotFoundException, InterruptedException {
    this.umbilical = umbilical;

    // start thread that will handle communication with parent
    //发送task任务报告,与父进程做交流
    TaskReporter reporter = new TaskReporter(getProgress(), umbilical,
        jvmContext);
    reporter.startCommunicationThread();
    //判断用的是新的MapReduceAPI还是旧的API
    boolean useNewApi = job.getUseNewMapper();
    initialize(job, getJobID(), reporter, useNewApi);

    // check if it is a cleanupJobTask
    //map任务有4种,Job-setup Task, Job-cleanup Task, Task-cleanup Task和MapTask
    if (jobCleanup) {
      //这里执行的是Job-cleanup Task
      runJobCleanupTask(umbilical, reporter);
      return;
    }
    if (jobSetup) {
      //这里执行的是Job-setup Task
      runJobSetupTask(umbilical, reporter);
      return;
    }
    if (taskCleanup) {
      //这里执行的是Task-cleanup Task
      runTaskCleanupTask(umbilical, reporter);
      return;
    }

    //如果前面3个任务都不是,执行的就是最主要的MapTask,根据新老API调用不同的方法
    if (useNewApi) {
      runNewMapper(job, splitMetaInfo, umbilical, reporter);
    } else {
      //我们关注一下老的方法实现splitMetaInfo为Spilt分片的信息,由于上步骤的InputFormat过程传入的
      runOldMapper(job, splitMetaInfo, umbilical, reporter);
    }
    done(umbilical, reporter);
  }
在这里我研究的都是旧的API所以往runOldMapper里面跳。在这里我要插入一句,后面的执行都会围绕着一个叫Mapper的东西,就是用户执行map函数的一个代理称呼一样,他可以完全自己重写map的背后的过程,也可以用系统自带的mapp流程。

Map Task内部实现分析_第3张图片

系统已经给了MapRunner的具体实现:

public void run(RecordReader<K1, V1> input, OutputCollector<K2, V2> output,
                  Reporter reporter)
    throws IOException {
    try {
      // allocate key & value instances that are re-used for all entries
      K1 key = input.createKey();
      V1 value = input.createValue();
      
      //从RecordReader中获取每个键值对,调用用户写的map函数
      while (input.next(key, value)) {
        // map pair to output
    	//调用用户写的map函数
        mapper.map(key, value, output, reporter);
        if(incrProcCount) {
          reporter.incrCounter(SkipBadRecords.COUNTER_GROUP, 
              SkipBadRecords.COUNTER_MAP_PROCESSED_RECORDS, 1);
        }
      }
    } finally {
      //结束了关闭mapper
      mapper.close();
    }
  }
从这里我们可以看出Map的过程就是迭代式的重复的执行用户定义的Map函数操作。好了,有了这些前提,我们可以往里深入的学习了刚刚说到了runOldMapper方法,里面马上要进行的就是Map Task的第一个过程Read。

      Read阶段的作业就是从RecordReader中读取出一个个key-value,准备给后面的map过程执行map函数操作。

//获取输入inputSplit信息
    InputSplit inputSplit = getSplitDetails(new Path(splitIndex.getSplitLocation()),
           splitIndex.getStartOffset());

    updateJobWithSplit(job, inputSplit);
    reporter.setInputSplit(inputSplit);
    
    //是否是跳过错误记录模式,获取RecordReader
    RecordReader<INKEY,INVALUE> in = isSkipping() ? 
        new SkippingRecordReader<INKEY,INVALUE>(inputSplit, umbilical, reporter) :
        new TrackedRecordReader<INKEY,INVALUE>(inputSplit, job, reporter);
        后面的就是Map阶段,把值取出来之后,就要给Mapper去执行里面的run方法了,run方法里面会调用用户自己实现的map函数,之前也都是分析过了的。 在用户编写的map的尾部,一般会调用collect.collect()方法,把处理后的key-value输出,这个时候,也就来到了collect阶段。

runner.run(in, new OldOutputCollector(collector, conf), reporter);
        之后进行的是Collect阶段主要的操作时什么呢,就是把一堆堆的key-value进行分区输出到环形缓冲区中,这是的数据仅仅放在内存中,还没有写到磁盘中。在collect这个过程中涉及的东西还比较多,看一下结构关系图;

Map Task内部实现分析_第4张图片

里面有个partitioner的成员变量,专门用于获取key-value的的分区号,默认是通过key的哈希取模运算,得到分区号的,当然你可以自定义实现,如果不分区的话partition就是等于-1。

  /**
   * Since the mapred and mapreduce Partitioners don't share a common interface
   * (JobConfigurable is deprecated and a subtype of mapred.Partitioner), the
   * partitioner lives in Old/NewOutputCollector. Note that, for map-only jobs,
   * the configured partitioner should not be called. It's common for
   * partitioners to compute a result mod numReduces, which causes a div0 error
   */
  private static class OldOutputCollector<K,V> implements OutputCollector<K,V> {
    private final Partitioner<K,V> partitioner;
    private final MapOutputCollector<K,V> collector;
    private final int numPartitions;

    @SuppressWarnings("unchecked")
    OldOutputCollector(MapOutputCollector<K,V> collector, JobConf conf) {
      numPartitions = conf.getNumReduceTasks();
      if (numPartitions > 0) {
    	//如果分区数大于0,则反射获取系统配置方法,默认哈希去模,用户可以自己实现字节的分区方法
    	//因为是RPC传来的,所以采用反射
        partitioner = (Partitioner<K,V>)
          ReflectionUtils.newInstance(conf.getPartitionerClass(), conf);
      } else {
    	//如果分区数为0,说明不进行分区
        partitioner = new Partitioner<K,V>() {
          @Override
          public void configure(JobConf job) { }
          @Override
          public int getPartition(K key, V value, int numPartitions) {
        	//分区号直接返回-1代表不分区处理
            return -1;
          }
        };
      }
      this.collector = collector;
    }
    .....
collect的代理调用实现方法如下,注意此时还不是真正调用:

.....
    @Override
    public void collect(K key, V value) throws IOException {
      try {
    	//具体通过collect方法分区写入内存,调用partitioner.getPartition获取分区号
    	//缓冲区为环形缓冲区
        collector.collect(key, value,
                          partitioner.getPartition(key, value, numPartitions));
      } catch (InterruptedException ie) {
        Thread.currentThread().interrupt();
        throw new IOException("interrupt exception", ie);
      }
    }
这里的collector指的是上面代码中的MapOutputCollector对象,开放给用调用的是OldOutputCollector,但是我们看看代码:

interface MapOutputCollector<K, V> {

    public void collect(K key, V value, int partition
                        ) throws IOException, InterruptedException;
    public void close() throws IOException, InterruptedException;
    
    public void flush() throws IOException, InterruptedException, 
                               ClassNotFoundException;
        
  }

他只是一个接口,真正的实现是谁呢?这个时候应该回头看一下代码:

private <INKEY,INVALUE,OUTKEY,OUTVALUE>
  void runOldMapper(final JobConf job,
                    final TaskSplitIndex splitIndex,
                    final TaskUmbilicalProtocol umbilical,
                    TaskReporter reporter
                    ) throws IOException, InterruptedException,
                             ClassNotFoundException {
	...
	int numReduceTasks = conf.getNumReduceTasks();
    LOG.info("numReduceTasks: " + numReduceTasks);
    MapOutputCollector collector = null;
    if (numReduceTasks > 0) {
      //如果存在ReduceTask,则将数据存入MapOutputBuffer环形缓冲
      collector = new MapOutputBuffer(umbilical, job, reporter);
    } else { 
      //如果没有ReduceTask任务的存在,直接写入把操作结果写入HDFS作为最终结果
      collector = new DirectMapOutputCollector(umbilical, job, reporter);
    }
    MapRunnable<INKEY,INVALUE,OUTKEY,OUTVALUE> runner =
      ReflectionUtils.newInstance(job.getMapRunnerClass(), job);

    try {
      runner.run(in, new OldOutputCollector(collector, conf), reporter);
      .....
分为2种情况当有Reduce任务时,collector为MapOutputBuffer,没有Reduce任务时为DirectMapOutputCollector,从这里也能明白,作者考虑的很周全呢,没有Reduce直接写入HDFS,效率会高很多。也就是说,最终的collect方法就是 MapOutputBuffer的方法了。

因为collect的操作时将数据存入环形缓冲区,这意味着,用户对数据的读写都是在同个缓冲区上的,所以为了避免出现脏数据的现象,一定会做额外处理,这里作者用了和BlockingQueue类似的操作,用一个ReetrantLocj,获取2个锁控制条件,一个为spillDone

,一个为spillReady,同个condition的await,signal方法实现丢缓冲区的读写控制。

.....
    private final ReentrantLock spillLock = new ReentrantLock();
    private final Condition spillDone = spillLock.newCondition();
    private final Condition spillReady = spillLock.newCondition();
    .....
然后看collect的方法:

public synchronized void collect(K key, V value, int partition
              ) throws IOException {
      .....
      try {
        // serialize key bytes into buffer
        int keystart = bufindex;
        keySerializer.serialize(key);
        if (bufindex < keystart) {
          // wrapped the key; reset required
          bb.reset();
          keystart = 0;
        }
        // serialize value bytes into buffer
        final int valstart = bufindex;
        valSerializer.serialize(value);
        int valend = bb.markRecord();

        if (partition < 0 || partition >= partitions) {
          throw new IOException("Illegal partition for " + key + " (" +
              partition + ")");
        }
        ....

至于环形缓冲区的结构,不是本文的重点,结构设计还是比较复杂的,大家可以自行学习。当环形缓冲区内的数据渐渐地被填满之后,会出现"溢写"操作,就是把缓冲中的数据写到磁盘DISK中,这个过程就是后面的Spill阶段了。

      Spill的阶段会时不时的穿插在collect的执行过程中。

...
          if (kvstart == kvend && kvsoftlimit) {
            LOG.info("Spilling map output: record full = " + kvsoftlimit);
            startSpill();
          }
如果开头kvstart的位置等kvend的位置,说明转了一圈有到头了,数据已经满了的状态,开始spill溢写操作。

private synchronized void startSpill() {
      LOG.info("bufstart = " + bufstart + "; bufend = " + bufmark +
               "; bufvoid = " + bufvoid);
      LOG.info("kvstart = " + kvstart + "; kvend = " + kvindex +
               "; length = " + kvoffsets.length);
      kvend = kvindex;
      bufend = bufmark;
      spillReady.signal();
    }
会触发condition的信号量操作:

private synchronized void startSpill() {
      LOG.info("bufstart = " + bufstart + "; bufend = " + bufmark +
               "; bufvoid = " + bufvoid);
      LOG.info("kvstart = " + kvstart + "; kvend = " + kvindex +
               "; length = " + kvoffsets.length);
      kvend = kvindex;
      bufend = bufmark;
      spillReady.signal();
    }
就会跑到了SpillThead这个地方执行sortAndSpill方法:

spillThreadRunning = true;
        try {
          while (true) {
            spillDone.signal();
            while (kvstart == kvend) {
              spillReady.await();
            }
            try {
              spillLock.unlock();
              //当缓冲区溢出时,写到磁盘中
              sortAndSpill();
sortAndSpill里面会对数据做写入文件操作写入之前还会有sort排序操作,数据多了还会进行一定的combine合并操作。

private void sortAndSpill() throws IOException, ClassNotFoundException,
                                       InterruptedException {
      ......
      try {
        // create spill file
        final SpillRecord spillRec = new SpillRecord(partitions);
        final Path filename =
            mapOutputFile.getSpillFileForWrite(numSpills, size);
        out = rfs.create(filename);

        final int endPosition = (kvend > kvstart)
          ? kvend
          : kvoffsets.length + kvend;
        //在写入操作前进行排序操作
        sorter.sort(MapOutputBuffer.this, kvstart, endPosition, reporter);
        int spindex = kvstart;
        IndexRecord rec = new IndexRecord();
        InMemValBytes value = new InMemValBytes();
        for (int i = 0; i < partitions; ++i) {
          IFile.Writer<K, V> writer = null;
          try {
            long segmentStart = out.getPos();
            writer = new Writer<K, V>(job, out, keyClass, valClass, codec,
                                      spilledRecordsCounter);
            if (combinerRunner == null) {
              // spill directly
              DataInputBuffer key = new DataInputBuffer();
              while (spindex < endPosition &&
                  kvindices[kvoffsets[spindex % kvoffsets.length]
                            + PARTITION] == i) {
                final int kvoff = kvoffsets[spindex % kvoffsets.length];
                getVBytesForOffset(kvoff, value);
                key.reset(kvbuffer, kvindices[kvoff + KEYSTART],
                          (kvindices[kvoff + VALSTART] - 
                           kvindices[kvoff + KEYSTART]));
                //writer中写入键值对操作
                writer.append(key, value);
                ++spindex;
              }
            } else {
              int spstart = spindex;
              while (spindex < endPosition &&
                  kvindices[kvoffsets[spindex % kvoffsets.length]
                            + PARTITION] == i) {
                ++spindex;
              }
              // Note: we would like to avoid the combiner if we've fewer
              // than some threshold of records for a partition
              //如果分区多的话,执行合并操作
              if (spstart != spindex) {
                combineCollector.setWriter(writer);
                RawKeyValueIterator kvIter =
                  new MRResultIterator(spstart, spindex);
                //执行一次文件合并combine操作
                combinerRunner.combine(kvIter, combineCollector);
              }
            }

          ......
          //写入到文件中
          spillRec.writeToFile(indexFilename, job);
        } else {
          indexCacheList.add(spillRec);
          totalIndexCacheMemory +=
            spillRec.size() * MAP_OUTPUT_INDEX_RECORD_LENGTH;
        }
        LOG.info("Finished spill " + numSpills);
        ++numSpills;
      } finally {
        if (out != null) out.close();
      }
    }
       每次Spill的过程都会产生一堆堆的文件,在最后的时候就会来到了Combine阶段,也就是Map任务的最后一个阶段了,他的任务就是把所有上一阶段的任务产生的文件进行Merge操作,合并成一个文件,便于后面的Reduce的任务的读取,在代码的对应实现中是collect.flush()方法。

.....
    try {
      runner.run(in, new OldOutputCollector(collector, conf), reporter);
      //将collector中的数据刷新到内存中去
      collector.flush();
    } finally {
      //close
      in.close();                               // close input
      collector.close();
    }
  }
这里的collector的flush方法调用的就是MapOutputBuffer.flush方法,
public synchronized void flush() throws IOException, ClassNotFoundException,
                                            InterruptedException {
      ...
      // shut down spill thread and wait for it to exit. Since the preceding
      // ensures that it is finished with its work (and sortAndSpill did not
      // throw), we elect to use an interrupt instead of setting a flag.
      // Spilling simultaneously from this thread while the spill thread
      // finishes its work might be both a useful way to extend this and also
      // sufficient motivation for the latter approach.
      try {
        spillThread.interrupt();
        spillThread.join();
      } catch (InterruptedException e) {
        throw (IOException)new IOException("Spill failed"
            ).initCause(e);
      }
      // release sort buffer before the merge
      kvbuffer = null;
      //最后进行merge合并成一个文件
      mergeParts();
      Path outputPath = mapOutputFile.getOutputFile();
      fileOutputByteCounter.increment(rfs.getFileStatus(outputPath).getLen());
    }
至此,Map任务宣告结束了,整体流程还是真是有点九曲十八弯的感觉。分析这么一个比较庞杂的过程,我一直在想如何更好的表达出我的想法,欢迎MapReduce的学习者,提出意见,共同学习

你可能感兴趣的:(mapreduce,hadoop,分布式,设计)