TaskTracker学习笔记

         上次分析完JobTracker通过TaskScheduler如何把作业分配给TaskTracker,这次把目光 移动到TaskTracker上面。TaskTracker在这里其实是一个slave的从属关系。我在后面的分析会通过TaskTracker的执行流程,主要讲他的2个过程的分析1.作业启动执行2.与JobTracker的heatbeat的过程。2个过程都是非常的典型。

         与JobTracker一样,TaskTracker也是作为一项服务所运行的,他也有自己的main函数入口。下面是一张全局的TaskTracker执行过程流程图:

TaskTracker学习笔记_第1张图片

jvmManager负责为每个Task分配一个java虚拟机环境让其执行,避免任务之间的干扰,TaskMemoryManager负责任务内存的监控,对于某些任务恶意消耗资源内存,会给予杀死此任务的处理。

        1.TaskTracker任务启动

        下面从main函数的入口开始分析一下TaskTracker的执行流程:

/**
   * Start the TaskTracker, point toward the indicated JobTracker
   * taskTracker同样也是一个服务程序,main函数开始执行
   */
  public static void main(String argv[]) throws Exception {
    StringUtils.startupShutdownMessage(TaskTracker.class, argv, LOG);
    if (argv.length != 0) {
      System.out.println("usage: TaskTracker");
      System.exit(-1);
    }
    try {
      //初始化作业配置
      JobConf conf=new JobConf();
      // enable the server to track time spent waiting on locks
      ReflectionUtils.setContentionTracing
        (conf.getBoolean("tasktracker.contention.tracking", false));
      //初始化度量统计系统
      DefaultMetricsSystem.initialize("TaskTracker");
      //根据作业配置初始化TaskTracker
      TaskTracker tt = new TaskTracker(conf);
      //注册MBean,方便外界工具检测TaskTracker的状态
      MBeans.register("TaskTracker", "TaskTrackerInfo", tt);
      //执行TaskTracker服务主程序
      tt.run();
    } catch (Throwable e) {
      LOG.error("Can not start task tracker because "+
                StringUtils.stringifyException(e));
      System.exit(-1);
    }
  }
让后我们进入其中的执行主程序tt.run():

/**
   * The server retry loop.  
   * This while-loop attempts to connect to the JobTracker.  It only 
   * loops when the old TaskTracker has gone bad (its state is
   * stale somehow) and we need to reinitialize everything.
   */
  public void run() {
    try {
      getUserLogManager().start();
      //开启CleanUp清理线程
      startCleanupThreads();
      boolean denied = false;
      while (running && !shuttingDown && !denied) {
        boolean staleState = false;
        try {
          // This while-loop attempts reconnects if we get network errors
          while (running && !staleState && !shuttingDown && !denied) {
            try {
              //offerService()执行了核心的启动操作
              State osState = offerService();
              if (osState == State.STALE) {
                staleState = true;
              } else if (osState == State.DENIED) {
                denied = true;
              }
              ......
我们可以看到,这里通过while操作,循环进行服务操作,如果拒绝服务,则会shutdown中断服务,服务的主要操作又在offerService方法中:

/**
   * Main service loop.  Will stay in this loop forever.
   * 主要的循环服务操作
   */
  State offerService() throws Exception {
      .....
	  // Send the heartbeat and process the jobtracker's directives
        //发送给JobTracker心跳包
        HeartbeatResponse heartbeatResponse = transmitHeartBeat(now);

        // Note the time when the heartbeat returned, use this to decide when to send the
        // next heartbeat   
        lastHeartbeat = System.currentTimeMillis();
        
        ....        
        //在这里获取了心跳回应中的action命令
        TaskTrackerAction[] actions = heartbeatResponse.getActions();
        if(LOG.isDebugEnabled()) {
          LOG.debug("Got heartbeatResponse from JobTracker with responseId: " + 
                    heartbeatResponse.getResponseId() + " and " + 
                    ((actions != null) ? actions.length : 0) + " actions");
        }
        if (reinitTaskTracker(actions)) {
          return State.STALE;
        }
            
        // resetting heartbeat interval from the response.
        heartbeatInterval = heartbeatResponse.getHeartbeatInterval();
        justStarted = false;
        justInited = false;
        if (actions != null){ 
          for(TaskTrackerAction action: actions) {
            if (action instanceof LaunchTaskAction) {
              //如果是执行Task任务指令,执行添加任务到任务队列中
              addToTaskQueue((LaunchTaskAction)action);
            } else if (action instanceof CommitTaskAction) {
             //如果是提交任务的指令,则执行后面的操作
              CommitTaskAction commitAction = (CommitTaskAction)action;
              if (!commitResponses.contains(commitAction.getTaskID())) {
                LOG.info("Received commit task action for " + 
                          commitAction.getTaskID());
                commitResponses.add(commitAction.getTaskID());
              }
            } else {
              //其他的指令一律添加到tasksToCleanup队列中等待被处理
              tasksToCleanup.put(action);
            }
          }
        }
        .....
在这里我省略了比较多的代码,把执行任务相关的核心操作保留了,在这里就开始执行了后面的和Task相关的很多操作了,当然这些任务都是通过收到JobTracker的心跳包Response来获得的,在通过获取里面的TaskTrackerAction命令来判断执行的。TaskTrackerAction里面包含了1枚举类,包括了以下的相关指令:

TaskTracker学习笔记_第2张图片

具体什么意思,看上面的英文解释就能理解了吧,上面代表了6种命令操作,我们侧重看第一个launch_task的命令执行,在上面的判断执行方法是addToTaskQueue();方法:

private void addToTaskQueue(LaunchTaskAction action) {
	//任务类型加入到任务待执行的容器中
    if (action.getTask().isMapTask()) {
      mapLauncher.addToTaskQueue(action);
    } else {
      reduceLauncher.addToTaskQueue(action);
    }
  }
这里的mapLauncher,reduceLauncher的类型是TaskLauncher,他是一个线程类:

class TaskLauncher extends Thread {
    private IntWritable numFreeSlots;
    private final int maxSlots;
    private List<TaskInProgress> tasksToLaunch;
   ....
也就是说,待执行的map,Reduce任务都是添加到taskToLauch中的,
public void addToTaskQueue(LaunchTaskAction action) {
      //新建1个TIP,并加入tasksToLaunch列表
      synchronized (tasksToLaunch) {
        TaskInProgress tip = registerTask(action, this);
        tasksToLaunch.add(tip);
        //唤醒所有被tasksToLaunch wait的操作,说明此时有新的任务了
        tasksToLaunch.notifyAll();
      }
    }
加入之后唤醒相应的操作,这个就很好理解了,一定是在empty的时候被阻塞住了,

public void run() {
      while (!Thread.interrupted()) {
        try {
          TaskInProgress tip;
          Task task;
          synchronized (tasksToLaunch) {
            while (tasksToLaunch.isEmpty()) {
              tasksToLaunch.wait();
            }
            //get the TIP
            tip = tasksToLaunch.remove(0);
            task = tip.getTask();
            LOG.info("Trying to launch : " + tip.getTask().getTaskID() + 
                     " which needs " + task.getNumSlotsRequired() + " slots");
          }
          //wait for free slots to run
          .....
          //got a free slot. launch the task
          startNewTask(tip);
到了startNewTask就是开始所谓的任务了。到此为止,TaskTracker的任务执行这条路,我们算彻底打通了,相关时序图如下:

TaskTracker学习笔记_第3张图片

        2.Heateat过程

        下面我们看另外一个流程,心跳机制。此过程的实现同样的主要是在offerService的循环操作中。首先第一步,判断是否到了发送心跳包的时间,因为心跳包是隔周期性的时间发送的,所以这里必须会进行判读:

/**
   * Main service loop.  Will stay in this loop forever.
   * 主要的循环服务操作
   */
  State offerService() throws Exception {
    long lastHeartbeat = System.currentTimeMillis();

    while (running && !shuttingDown) {
      try {
        long now = System.currentTimeMillis();
        
        // accelerate to account for multiple finished tasks up-front
        //判断上次心跳的时间+心跳等待时间是否已经到了当前时间,如果到了可以发送新的心跳包
        long remaining = 
          (lastHeartbeat + getHeartbeatInterval(finishedCount.get())) - now;
        //如果还没到,时间有剩余,则要强行等待剩余的时间
        while (remaining > 0) {
          // sleeps for the wait time or 
          // until there are *enough* empty slots to schedule tasks
          synchronized (finishedCount) {
            finishedCount.wait(remaining);
            
            // Recompute
            now = System.currentTimeMillis();
            remaining = 
              (lastHeartbeat + getHeartbeatInterval(finishedCount.get())) - now;
            
            if (remaining <= 0) {
              // Reset count 
              finishedCount.set(0);
              break;
            }
          }
        }
        .....
假设已经到达了发送时间了,会执行后面的操作,检测版本号,TaskTracker和JobTracker的版本号必须一致:

.....
        // If the TaskTracker is just starting up:
        // 1. Verify the buildVersion
        // 2. Get the system directory & filesystem
        if(justInited) {
         //验证版本号,如果版本号不对,则返回拒绝状态
          String jobTrackerBV = jobClient.getBuildVersion();
          if(!VersionInfo.getBuildVersion().equals(jobTrackerBV)) {
            String msg = "Shutting down. Incompatible buildVersion." +
            "\nJobTracker's: " + jobTrackerBV + 
            "\nTaskTracker's: "+ VersionInfo.getBuildVersion();
            LOG.error(msg);
            try {
              jobClient.reportTaskTrackerError(taskTrackerName, null, msg);
            } catch(Exception e ) {
              LOG.info("Problem reporting to jobtracker: " + e);
            }
            return State.DENIED;
          }
如果通过上述2个验证,基本上就达到了发送的条件了,下面就准备发送操作了:

// Send the heartbeat and process the jobtracker's directives
        //发送给JobTracker心跳包
        HeartbeatResponse heartbeatResponse = transmitHeartBeat(now);
就是在上面这个方法中实现了发送的操作,此方法的返回值是JobTracker的心跳回复包,里面就包含着刚刚的TaskTrackerAction命令信息。我们进入transmitHeartBeat。之前分析过,心跳机制的有1个主要的作用就是汇报TaskTracker的资源使用情况和作业执行情况给JobTracker节点。以此可以让主节点可以进行资源调配。所以在上面的这个方法必不可少的操作是构建TaskTracker的Status状态信息。这个类包含的信息还比较多。下面是主要的此类的关系结构:

TaskTracker学习笔记_第4张图片

里面2大包含类ResourceStatus(TaskTracker资源使用情况),TaskTrackerHealthStatus(TaskTracker节点健康状况)。首先当然是新建一个Status了:

/**
   * Build and transmit the heart beat to the JobTracker
   * 将TaskTracker自身的状态信息发送给JobTracker,并获得一个心跳包的回应
   * @param now current time
   * @return false if the tracker was unknown
   * @throws IOException
   */
  HeartbeatResponse transmitHeartBeat(long now) throws IOException {
    ....
    // 
    // Check if the last heartbeat got through... 
    // if so then build the heartbeat information for the JobTracker;
    // else resend the previous status information.
    //
    if (status == null) {
      synchronized (this) {
        status = new TaskTrackerStatus(taskTrackerName, localHostname, 
                                       httpPort, 
                                       cloneAndResetRunningTaskStatuses(
                                         sendCounters), 
                                       failures, 
                                       maxMapSlots,
                                       maxReduceSlots); 
      }
 
后面就是各种获取节点CPU,内存等基本信息,这里就不列举了,不过这里提一点,对于TaskTracker是否还能运行任务,在这里是通过TaskTracker是否达到了它的maxSlot上限作为1个标准。一般1个Reduce Task占据1个slot单元,1个Map Task同样占据1个Slot单元,如果1个TaskTracker结点拥有好多slot单元,那么他就可以运行很多Task。

//
    // Check if we should ask for a new Task
    // 检测TaskTracker是否需要一个新 Task任务
    //
    boolean askForNewTask;
    long localMinSpaceStart;
    synchronized (this) {
      //通过判断当前所占据的slots数量是否已经达到最大slot的数量作为标准
      askForNewTask = 
        ((status.countOccupiedMapSlots() < maxMapSlots || 
          status.countOccupiedReduceSlots() < maxReduceSlots) && 
         acceptNewTasks); 
      localMinSpaceStart = minSpaceStart;
    }
askForNewTask布尔类型就代表TaskTracker是否还能运行新的任务,封装好了这些Status信息之后,就要执行关键的发送步骤了:

    //
    // Xmit the heartbeat
    // 通过JobClient发送给JobTracker,并获得1个回复
    //
    HeartbeatResponse heartbeatResponse = jobClient.heartbeat(status, 
                                                              justStarted,
                                                              justInited,
                                                              askForNewTask, 
                                                              heartbeatResponseId);
是通过JobClient的方法发送的。得到的heartbeatResponse返回结果就是JobTracker结果了。至于里面JobClient具体怎么发送就不是本次分析的重点了,HeartBeat也分析完毕。同样看一下流程图:

TaskTracker学习笔记_第5张图片

      

     总结

     2个过程都是在offerService核心服务程序中执行的。了解完JobTracker和TaskTracker的工作原理,在聊了具体Task任务的执行的5个阶段,从微观Task细节的执行到宏观上作业调度的原理分析理解,的确对MapReduce计算模型的理解上升了许多的层次。


你可能感兴趣的:(mapreduce,源码,技术,大数据,设计)