本文均属自己阅读源码的点滴总结,转账请注明出处谢谢。
欢迎和大家交流。qq:1037701636 email:[email protected],[email protected]
本文承接上文的主要内容,对视频缓存区队列的相关执行过程进行一个解析。先给出之前的应用层的调用流程
本文主要涉及到的命令为VIDIOC_QBUF,VIDIOC_DQBUF,VIDIOC_STREAMON。
1.VIDIOC_QBUF命令
这个命令实际的内容可理解为进行缓存区队列的入列操作。也许这样说比较抽象,但是看过源码后就很好理解。在源码中会调用videobuf_qbuf函数,其中主要由buf_prepare指针函数来完成缓存区队列的准备
static int buffer_prepare(struct videobuf_queue *q, struct videobuf_buffer *vb, enum v4l2_field field) { vpfe_obj *vpfe = &vpfe_device; unsigned int buf_size; dev_dbg(vpfe_dev, "\nstarting buffer_prepare"); if (device_type == TVP5146) { buf_size = VPFE_TVP5146_MAX_FBUF_SIZE; } else { buf_size = VPFE_MT9T001_MAX_FBUF_SIZE; } if (vb->state == STATE_NEEDS_INIT) { vb->width = vpfe->vwin.width; //720 vb->height = vpfe->vwin.height; //576 vb->size = buf_size; //216*4K vb->field = field; //V4L2_FIELD_INTERLACED } vb->state = STATE_PREPARED; dev_dbg(vpfe_dev, "\nEnd of buffer_prepare"); return 0; }
我们可以发现,他将每一个缓存区的状态设置为了STATE_PREPARED。随后执行list_add_tail(&buf->stream,&q->stream);完成将缓存区的stream链表数据添加到整个缓存区队列的stream中。
2.VIDIOC_STREAMON命令
在完成之前的缓存区申请,已经mmap的相关操作之后,就会执行该命令行的系统调用,在这个命令行中,主要完成的是Dm6446的视频前端VPFE的相关硬件初始化,Tvp5416的初始化。
case VIDIOC_STREAMON: //启动视频流采集 dev_dbg(vpfe_dev, "\nStarting VIDIOC_STREAMON ioctl"); if (!fh->io_allowed) { ret = -EACCES; break; } if (vpfe->started) { ret = -EBUSY; break; } ret = videobuf_streamon(&vpfe->bufqueue); if (ret) break; down_interruptible(&vpfe->lock); /* get the current and next frame buffers */ /* we expect at least one buffer is in driver at this point */ /* if not, error is returned */ if (list_empty(&vpfe->dma_queue)) { ret = -EIO; break; } dev_dbg(vpfe_dev, "cur frame %x.\n", (unsigned int)vpfe->dma_queue.next); vpfe->nextFrm = vpfe->curFrm = list_entry(vpfe->dma_queue.next, struct videobuf_buffer, queue); /* remove the buffer from the queue */ list_del(&vpfe->curFrm->queue); vpfe->curFrm->state = STATE_ACTIVE;//确保有一个缓存区在缓存区队列中 if (device_type == TVP5146) { /* sense the current video input standard */ tvp5146_ctrl(TVP5146_CONFIG, &vpfe->tvp5146_params); //5146完成相关的配置 frm_format = vpfe_device.ccdc_params_ycbcr.frm_fmt; image_window = vpfe_device.ccdc_params_ycbcr.win; /* configure the ccdc and resizer as needed */ /* start capture by enabling CCDC and resizer */ ccdc_config_ycbcr(&vpfe->ccdc_params_ycbcr); //ccdc配置为YCbCr格式 } else { frm_format = vpfe_device.ccdc_params_raw.frm_fmt; image_window = vpfe_device.ccdc_params_raw.win; /* configure the ccdc and resizer as needed */ /* start capture by enabling CCDC and resizer */ ccdc_config_raw(&vpfe->ccdc_params_raw); /* enable internal timing generator */ ccdc_vdhd_enable(TRUE); } /* setup the memory address for the frame buffer */ ccdc_setfbaddr(((unsigned long)(vpfe->curFrm->boff)));//32-bit SDRAM starting address for CCD controller output /* enable CCDC */ vpfe->field_id = 0;//设为0 vpfe->started = TRUE; vpfe->mode_changed = FALSE; vpfe->field_offset = (vpfe->vwin.height - 2) * vpfe->vwin.width; ccdc_enable(TRUE);//启动CCDC进行视频的采集 up(&vpfe->lock); dev_dbg(vpfe_dev, "started video streaming.\n"); break;
首先会调用videobuf_streamon函数,在该函数中执行q->streaming = 1;//表示当前的缓存区队列已经处于视频流启动。随后进行缓存区链表的遍历,看当前缓存区是否已经处于STATE_PREPARED状态,因为之前已经执行VIDIOC_QBUF命令所以当前就会执行buffer_queue指针函数。
static void buffer_queue(struct videobuf_queue *q, struct videobuf_buffer *vb) { vpfe_obj *vpfe = &vpfe_device; /* add the buffer to the DMA queue */ dev_dbg(vpfe_dev, "\nstarting buffer_queue"); list_add_tail(&vb->queue, &vpfe->dma_queue);//视频缓存区添加到DMA队列 vb->state = STATE_QUEUED; dev_dbg(vpfe_dev, "\nEnding buffer_queue"); }
在这部分代码中主要实现,将当前的缓存区的链表数据加入到vpfe实体的dma链表头中,完成所谓的入列操作。并将当前状态设置为STATE_QUEUED。以此形成dma带领多个缓存区实体(以链表的形式存在)如下图:
最终会在内核形成形成这样一个链表形式。
在VIDIOC_STREAMON命令中所做的内容还有获取当前视频帧缓存区和下一个帧的缓存区,使curfrm=nextfrm,随后就将Buffer[0]的queue从dma_queue的链表中去除,主要用于在中断中对当前数据帧所存放的缓存区进行调度。应该来说这是整个缓存区合理使用的核心所做。过会再中断函数中介绍。
当然CCDC和TVP5416的相关初始化也在该命令行完成,包括各种硬件寄存器的设置,这些是VPFE能否正常工作的前提所在。完成好相关的参数设置后,使用ccdc_enable(true )启动CCDC模块,开始视频流的采集。
3.依据我的分析,启动CCDC后会立马产生一个偶场数据采集的中断,CCDC的中断VINT0(在中断中优先级最高),中断的回调函数如下:
static irqreturn_t vpfe_isr(int irq, void *dev_id, struct pt_regs *regs) { vpfe_obj *vpfe = &vpfe_device; int fid; unsigned long jiffies_time = get_jiffies_64(); struct timeval timevalue; int val = 0; val = ccdc_sbl_reset(); /*Convert time representations between jiffies and struct timeval */ jiffies_to_timeval(jiffies_time, &timevalue); dev_dbg(vpfe_dev, "\nStarting Davinci_vpfe\vpfe_isr..."); if (frm_format == CCDC_FRMFMT_INTERLACED) { /* check which field we are in hardware */ fid = ccdc_getfid(); //获取当前采集的场 /* switch the software maintained field id */ vpfe->field_id ^= 1;//field_id为1则结果为0,即vpfe->field_id=0为偶场,反之为1 dev_dbg(vpfe_dev, "field id = %x:%x.\n", fid, vpfe->field_id); if (fid == vpfe->field_id) { /* we are in-sync here,continue */ if (fid == 0) { /* even field */ //偶场 /* One frame is just being captured. If the * next frame is available, release the current * frame and move on */ if (vpfe->curFrm != vpfe->nextFrm) { /* Copy frame capture time value in * curFrm->ts */ vpfe->curFrm->ts = timevalue; vpfe->curFrm->state = STATE_DONE; wake_up_interruptible(&vpfe-> curFrm->done); vpfe->curFrm = vpfe->nextFrm; } /* based on whether the two fields are stored * interleavely or separately in memory, * reconfigure the CCDC memory address */ if (vpfe->field == V4L2_FIELD_SEQ_TB) { u32 addr = vpfe->curFrm->boff + vpfe->field_offset; ccdc_setfbaddr((unsigned long) addr); } } else if (fid == 1) { /* odd field */ /* if one field is just being captured */ /* configure the next frame */ /* get the next frame from the empty queue */ /* if no frame is available, */ /* hold on to the current buffer */ if (!list_empty(&vpfe->dma_queue) //奇场处理 && vpfe->curFrm == vpfe->nextFrm) { vpfe->nextFrm = list_entry(vpfe->dma_queue. next, struct videobuf_buffer, queue); list_del(&vpfe->nextFrm->queue); vpfe->nextFrm->state = STATE_ACTIVE; ccdc_setfbaddr((unsigned long) vpfe->nextFrm->boff);//奇数场奇数即一帧图像采集结束,更换ccdc采集的数据存放地址 } if (vpfe->mode_changed) { ccdc_setwin(&image_window, frm_format, 2); /* update the field offset */ vpfe->field_offset = (vpfe->vwin.height - 2) * vpfe->vwin.width; vpfe->mode_changed = FALSE; } } } else if (fid == 0) { /* even field */ /* recover from any hardware out-of-sync due to */ /* possible switch of video source */ /* for fid == 0, sync up the two fids */ /* for fid == 1, no action, one bad frame will */ /* go out, but it is not a big deal */ vpfe->field_id = fid; } } else if (frm_format == CCDC_FRMFMT_PROGRESSIVE) { dev_dbg(vpfe_dev, "\nframe format is progressive..."); if (vpfe->curFrm != vpfe->nextFrm) { /* Copy frame capture time value in curFrm->ts */ vpfe->curFrm->ts = timevalue; vpfe->curFrm->state = STATE_DONE; wake_up_interruptible(&vpfe->curFrm->done); vpfe->curFrm = vpfe->nextFrm; } } dev_dbg(vpfe_dev, "interrupt returned.\n"); return IRQ_RETVAL(1);
依旧我对这段中断程序的理解来说,先是执行偶场产生的中断(一帧数据VPFE会产生一个中断,但是隔行扫描时会出现奇偶两场的中断)所以在中断程序中会出现if的判断。
比起逐行的模式复杂很多。在中断程序中,偶场先到,然后会判断当前视频的帧缓存区是不是和下一个是一样(在启动前已经将当前的curfrm=nextfrm),在奇数场中断到来时,首先查看dma_queue链表是否为空并判断当前和下一个缓存区帧是否一样,如果一样,就获取链表中的缓存区buffer[1]给nextfrm,去除当前缓存区在dma_queue的位置。同时对下一帧数据在DDR中的存储地址进行修改。当当前帧完成,也就是一下针对偶场开始时,会发现nextfrm不等于curfrm(即第一个缓存区已经存储了第一帧数据),则把存储了第一帧数据的缓存区buffer[0]设置为STATE_DONE,随后curfrm=nextfrm=buffer[1]。以此循环进行。虽然我们会发现出现dma_queue中的内容消失了,也就是说缓存区都放好了数据之后,都不在该链表中。后来才发现还会再做入列操作。
4.VIDIOC_DQBUF命令
int videobuf_dqbuf(struct videobuf_queue *q, struct v4l2_buffer *b, int nonblocking)//nonblocking=0,缓存区出队列 { struct videobuf_buffer *buf; int retval; down(&q->lock); retval = -EBUSY; if (q->reading) goto done; retval = -EINVAL; if (b->type != q->type) goto done; if (list_empty(&q->stream)) goto done; buf = list_entry(q->stream.next, struct videobuf_buffer, stream);//遍历查找下一个缓存区 retval = videobuf_waiton(buf, nonblocking, 1);//阻塞处理 if (retval < 0) goto done; switch (buf->state) { case STATE_ERROR: retval = -EIO; /* fall through */ case STATE_DONE: if(q->pci) videobuf_dma_pci_sync(q->pci,&buf->dma); buf->state = STATE_IDLE; break; default: retval = -EINVAL; goto done; } list_del(&buf->stream);//从链表中去除当前buf的链表 memset(b,0,sizeof(*b)); videobuf_status(b,buf,q->type); done: up(&q->lock); return retval; }
其实按照函数的执行流程,该函数应该先于中断函数执行,该函数先生遍历stream链表获取当前的缓存区这里理解为buffer[0]。然后进入写数据以阻塞的方式进行,启动等待队列,直到该进程被再次调度。而该等待队列的唤醒,恰恰在中断中进行,也就是一帧数据写入完成到buffer[0]时进行,同时在完成这一步之后,随后在应用程序中就会再次调用VIDIOC_QBUF这个命令,完成对当前以完成一帧数据存储的缓存区buffer[0]重新加入到dma_queue中,这就顺利解决了缓存区数据的循环写入。不会像之前理解的那样以为只有出列操作。总结就是,先启动后,缓存区出列操作,进入等待队列阻塞,直到完成一帧数据的写入哦,应用程序再对当前缓存区实现入列操作。故形成循环。
以上3篇博文都为自己阅读linux下面V4L2视频驱动架构下的源码所得,全部为自己总结。为整个项目的顺利进行打好基础。