在2^k*2^k个方格组成的棋盘中,有一个方格被占用,用下图的4种L型骨牌覆盖所有棋盘上的其余所有方格,不能重叠。
代码如下:
def chess(tr,tc,pr,pc,size): global mark global table mark+=1 count=mark if size==1: return half=size//2 if pr<tr+half and pc<tc+half: chess(tr,tc,pr,pc,half) else: table[tr+half-1][tc+half-1]=count chess(tr,tc,tr+half-1,tc+half-1,half) if pr<tr+half and pc>=tc+half: chess(tr,tc+half,pr,pc,half) else: table[tr+half-1][tc+half]=count chess(tr,tc+half,tr+half-1,tc+half,half) if pr>=tr+half and pc<tc+half: chess(tr+half,tc,pr,pc,half) else: table[tr+half][tc+half-1]=count chess(tr+half,tc,tr+half,tc+half-1,half) if pr>=tr+half and pc>=tc+half: chess(tr+half,tc+half,pr,pc,half) else: table[tr+half][tc+half]=count chess(tr+half,tc+half,tr+half,tc+half,half) def show(table): n=len(table) for i in range(n): for j in range(n): print(table[i][j],end=' ') print('') mark=0 n=8 table=[[-1 for x in range(n)] for y in range(n)] chess(0,0,2,2,n) show(table)
采用分治法每次把棋盘分成4份,如果特殊格子在这个小棋盘中则继续分成4份,如果不在这个小棋盘中就把该小棋盘中靠近中央的那个格子置位,表示L型骨牌的1/3占据此处,每一次递归都会遍历查询4个小棋盘,三个不含有特殊格子的棋盘置位的3个格子正好在大棋盘中央构成一个完整的L型骨牌,依次类推,找到全部覆盖方法。运行结果如下:
转载请注明:转自http://blog.csdn.net/littlethunder/article/details/25288969