hadoop:hadoop2.2 ,windows myeclipse环境;
Eclipse调用hadoop运行MR程序其实就是普通的java程序可以提交MR任务到集群执行而已。在Hadoop1中,只需指定jt(jobtracker)和fs(namenode)即可,一般如下:
Configuration conf = new Configuration(); conf.set("mapred.job.tracker", "192.168.128.138:9001"); conf.set("fs.default.name","192.168.128.138:9000");上面的代码在hadoop1中运行是ok的,完全可以使用java提交任务到集群运行。但是,hadoop2却是没有了jt,新增了yarn。这个要如何使用呢?最简单的想法,同样指定其配置,试试。
Configuration conf = new YarnConfiguration(); conf.set("fs.defaultFS", "hdfs://node31:9000"); conf.set("mapreduce.framework.name", "yarn"); conf.set("yarn.resourcemanager.address", "node31:8032");恩,这样配置后,可以运行,首先是下面的错误:
2014-04-03 21:20:21,568 ERROR [main] util.Shell (Shell.java:getWinUtilsPath(303)) - Failed to locate the winutils binary in the hadoop binary path java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries. at org.apache.hadoop.util.Shell.getQualifiedBinPath(Shell.java:278) at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:300) at org.apache.hadoop.util.Shell.<clinit>(Shell.java:293) at org.apache.hadoop.util.StringUtils.<clinit>(StringUtils.java:76) at org.apache.hadoop.yarn.conf.YarnConfiguration.<clinit>(YarnConfiguration.java:345) at org.fansy.hadoop.mr.WordCount.getConf(WordCount.java:104) at org.fansy.hadoop.mr.WordCount.runJob(WordCount.java:84) at org.fansy.hadoop.mr.WordCount.main(WordCount.java:47)
然后是什么权限问题之类的,这个时候就需要去调整下权限,至少我目前是这样做的。调整的权限主要有/tmp 以及运行wordcount的输入、输出目录。命令如下: $HADOOP_HOME/bin/hadoop fs -chmod -R 777 /tmp 。
然后直到你出现了下面的错误,那么,好了,可以说你已经成功了一半了。
2014-04-03 20:32:36,596 ERROR [main] security.UserGroupInformation (UserGroupInformation.java:doAs(1494)) - PriviledgedActionException as:Administrator (auth:SIMPLE) cause:java.io.IOException: Failed to run job : Application application_1396459813671_0001 failed 2 times due to AM Container for appattempt_1396459813671_0001_000002 exited with exitCode: 1 due to: Exception from container-launch: org.apache.hadoop.util.Shell$ExitCodeException: /bin/bash: line 0: fg: no job control at org.apache.hadoop.util.Shell.runCommand(Shell.java:464) at org.apache.hadoop.util.Shell.run(Shell.java:379) at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:589) at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:195) at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:283) at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:79) at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334) at java.util.concurrent.FutureTask.run(FutureTask.java:166) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:724) .Failing this attempt.. Failing the application.用上面出现的错误去google,可以得到这个网页:https://issues.apache.org/jira/browse/MAPREDUCE-5655 。 恩,对的。这个网页就是我们的solution。
我们分为1、2、3步骤吧。
1. 修改MRapps.java 、YARNRunner.java的源码,然后打包替换原来的jar包中的相应class文件,这两个jar我已经打包,可以在这里下载http://download.csdn.net/detail/fansy1990/7143547 。然后替换集群中相应的jar吧,同时需要注意替换Myeclipse中导入的包。额,说起Myeclipse中的jar包,这里还是先上幅jar包的图吧:
2. 修改mapred-default.xml ,添加:(这个只需在eclipse中导入的jar包修改即可,修改后的jar包不用上传到集群)
<property> <name>mapred.remote.os</name> <value>Linux</value> <description> Remote MapReduce framework's OS, can be either Linux or Windows </description> </property>(题外话,添加了这个属性后,按说我new一个Configuration后,我使用conf.get("mapred.remote.os")的时候应该是可以得到Linux的,但是我得到的却是null,这个就不清楚是怎么了。)
其文件在:
这时,你再运行程序,额好吧程序基本可以提交了,但是还是报错,查看log,可以看到下面的错误:
Error: Could not find or load main class org.apache.hadoop.mapreduce.v2.app.MRAppMaster额,说了这么久,还是把我的wordcount程序贴出来吧:
package org.fansy.hadoop.mr; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.LocatedFileStatus; import org.apache.hadoop.fs.Path; import org.apache.hadoop.fs.RemoteIterator; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.ClusterStatus; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.yarn.conf.YarnConfiguration; import org.slf4j.Logger; import org.slf4j.LoggerFactory; public class WordCount { private static Logger log = LoggerFactory.getLogger(WordCount.class); public static class WCMapper extends Mapper<LongWritable, Text, LongWritable, Text> { public void map(LongWritable key, Text value, Context cxt) throws IOException,InterruptedException { // String[] values= value.toString().split("[,| ]"); cxt.write(key, value); } } public static class WCReducer extends Reducer<LongWritable, Text, LongWritable,Text> { public void reduce(LongWritable key, Iterable<Text> values, Context cxt) throws IOException,InterruptedException { StringBuffer buff = new StringBuffer(); for (Text v:values) { buff.append(v.toString()+"\t"); } cxt.write(key, new Text(buff.toString())); } } public static void main(String[] args) throws Exception { // checkFS(); String input ="hdfs://node31:9000/input/test.dat"; String output="hdfs://node31:9000/output/wc003"; runJob(input,output); // runJob(args[0],args[1]); // upload(); } /** * test operate the hdfs * @throws IOException */ public static void checkFS() throws IOException{ Configuration conf=getConf(); Path f= new Path("/user"); FileSystem fs = FileSystem.get(f.toUri(),conf); RemoteIterator<LocatedFileStatus> paths=fs.listFiles(f, true); while(paths.hasNext()){ System.out.println(paths.next()); } } public static void upload() throws IOException{ Configuration conf = getConf(); Path f= new Path("d:\\wordcount.jar"); FileSystem fs = FileSystem.get(f.toUri(),conf); fs.copyFromLocalFile(true, f, new Path("/input/wordcount.jar")); System.out.println("done ..."); } /** * test the job submit * @throws IOException * @throws InterruptedException * @throws ClassNotFoundException */ public static void runJob(String input,String output) throws IOException, ClassNotFoundException, InterruptedException{ Configuration conf=getConf(); Job job = new Job(conf,"word count"); // job.setJar("hdfs://node31:9000/input/wordcount.jar"); job.setJobName("wordcount"); job.setJarByClass(WordCount.class); // job.setOutputFormatClass(SequenceFileOutputFormat.class); job.setOutputKeyClass(LongWritable.class); job.setOutputValueClass(Text.class); job.setMapperClass(WCMapper.class); job.setCombinerClass(WCReducer.class); job.setReducerClass(WCReducer.class); FileInputFormat.addInputPath(job, new Path(input)); // SequenceFileOutputFormat.setOutputPath(job, new Path(args[1])); FileOutputFormat.setOutputPath(job, new Path(output)); System.exit(job.waitForCompletion(true)?0:1); } private static Configuration getConf() throws IOException{ Configuration conf = new YarnConfiguration(); conf.set("fs.defaultFS", "hdfs://node31:9000"); conf.set("mapreduce.framework.name", "yarn"); conf.set("yarn.resourcemanager.address", "node31:8032"); // conf.set("mapred.remote.os", "Linux"); System.out.println(conf.get("mapred.remote.os")); // JobClient client = new JobClient(conf); // ClusterStatus cluster = client.getClusterStatus(); return conf; } }
<property> <name>mapreduce.application.classpath</name> <value> $HADOOP_CONF_DIR, $HADOOP_COMMON_HOME/share/hadoop/common/*, $HADOOP_COMMON_HOME/share/hadoop/common/lib/*, $HADOOP_HDFS_HOME/share/hadoop/hdfs/*, $HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/*, $HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*, $HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*, $HADOOP_YARN_HOME/share/hadoop/yarn/*, $HADOOP_YARN_HOME/share/hadoop/yarn/lib/* </value> </property>对于yarn-default.xml也是同样的修改,其在hadoop-yarn-common-2.2.0.jar包中,修改内容如下:
<property> <name>mapreduce.application.classpath</name> <value> $HADOOP_CONF_DIR, $HADOOP_COMMON_HOME/share/hadoop/common/*, $HADOOP_COMMON_HOME/share/hadoop/common/lib/*, $HADOOP_HDFS_HOME/share/hadoop/hdfs/*, $HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/*, $HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*, $HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*, $HADOOP_YARN_HOME/share/hadoop/yarn/*, $HADOOP_YARN_HOME/share/hadoop/yarn/lib/* </value> </property>
4. 经过上面的替换,然后再次运行,出现下面的错误:
Caused by: java.lang.ClassNotFoundException: Class org.fansy.hadoop.mr.WordCount$WCMapper not found at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:1626) at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:1718) ... 8 more额,好吧,我应该不用多少了,这样的错误,应该已经说明我们的myeclipse可以提交任务到hadoop2了,并且可以运行了。好吧最后一步,上传我们打包的wordcount程序的jar文件到$HADOOP_HOME/share/hadoop/mapreduce/lib下面,然后再次运行。(这里上传后不用重启集群)呵呵,最后得到下面的结果:
2014-04-03 21:17:34,289 ERROR [main] util.Shell (Shell.java:getWinUtilsPath(303)) - Failed to locate the winutils binary in the hadoop binary path java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries. at org.apache.hadoop.util.Shell.getQualifiedBinPath(Shell.java:278) at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:300) at org.apache.hadoop.util.Shell.<clinit>(Shell.java:293) at org.apache.hadoop.util.StringUtils.<clinit>(StringUtils.java:76) at org.apache.hadoop.yarn.conf.YarnConfiguration.<clinit>(YarnConfiguration.java:345) at org.fansy.hadoop.mr.WordCount.getConf(WordCount.java:104) at org.fansy.hadoop.mr.WordCount.runJob(WordCount.java:84) at org.fansy.hadoop.mr.WordCount.main(WordCount.java:47) Linux 2014-04-03 21:18:19,853 WARN [main] util.NativeCodeLoader (NativeCodeLoader.java:<clinit>(62)) - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 2014-04-03 21:18:20,499 INFO [main] client.RMProxy (RMProxy.java:createRMProxy(56)) - Connecting to ResourceManager at node31/192.168.0.31:8032 2014-04-03 21:18:20,973 WARN [main] mapreduce.JobSubmitter (JobSubmitter.java:copyAndConfigureFiles(149)) - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this. 2014-04-03 21:18:21,020 INFO [main] input.FileInputFormat (FileInputFormat.java:listStatus(287)) - Total input paths to process : 1 2014-04-03 21:18:21,313 INFO [main] mapreduce.JobSubmitter (JobSubmitter.java:submitJobInternal(394)) - number of splits:1 2014-04-03 21:18:21,336 INFO [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - user.name is deprecated. Instead, use mapreduce.job.user.name 2014-04-03 21:18:21,337 INFO [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.jar is deprecated. Instead, use mapreduce.job.jar 2014-04-03 21:18:21,337 INFO [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - fs.default.name is deprecated. Instead, use fs.defaultFS 2014-04-03 21:18:21,338 INFO [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class 2014-04-03 21:18:21,338 INFO [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapreduce.combine.class is deprecated. Instead, use mapreduce.job.combine.class 2014-04-03 21:18:21,339 INFO [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class 2014-04-03 21:18:21,339 INFO [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.job.name is deprecated. Instead, use mapreduce.job.name 2014-04-03 21:18:21,339 INFO [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapreduce.reduce.class is deprecated. Instead, use mapreduce.job.reduce.class 2014-04-03 21:18:21,340 INFO [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir 2014-04-03 21:18:21,340 INFO [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir 2014-04-03 21:18:21,342 INFO [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps 2014-04-03 21:18:21,343 INFO [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class 2014-04-03 21:18:21,343 INFO [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir 2014-04-03 21:18:21,513 INFO [main] mapreduce.JobSubmitter (JobSubmitter.java:printTokens(477)) - Submitting tokens for job: job_1396463733942_0003 2014-04-03 21:18:21,817 INFO [main] impl.YarnClientImpl (YarnClientImpl.java:submitApplication(174)) - Submitted application application_1396463733942_0003 to ResourceManager at node31/192.168.0.31:8032 2014-04-03 21:18:21,859 INFO [main] mapreduce.Job (Job.java:submit(1272)) - The url to track the job: http://node31:8088/proxy/application_1396463733942_0003/ 2014-04-03 21:18:21,860 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1317)) - Running job: job_1396463733942_0003 2014-04-03 21:18:31,307 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1338)) - Job job_1396463733942_0003 running in uber mode : false 2014-04-03 21:18:31,311 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1345)) - map 0% reduce 0% 2014-04-03 21:19:02,346 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1345)) - map 100% reduce 0% 2014-04-03 21:19:11,416 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1345)) - map 100% reduce 100% 2014-04-03 21:19:11,425 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1356)) - Job job_1396463733942_0003 completed successfully 2014-04-03 21:19:11,552 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1363)) - Counters: 43 File System Counters FILE: Number of bytes read=11139 FILE: Number of bytes written=182249 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=8646 HDFS: Number of bytes written=10161 HDFS: Number of read operations=6 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=1 Launched reduce tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=29330 Total time spent by all reduces in occupied slots (ms)=5825 Map-Reduce Framework Map input records=235 Map output records=235 Map output bytes=10428 Map output materialized bytes=11139 Input split bytes=98 Combine input records=235 Combine output records=235 Reduce input groups=235 Reduce shuffle bytes=11139 Reduce input records=235 Reduce output records=235 Spilled Records=470 Shuffled Maps =1 Failed Shuffles=0 Merged Map outputs=1 GC time elapsed (ms)=124 CPU time spent (ms)=21920 Physical memory (bytes) snapshot=299376640 Virtual memory (bytes) snapshot=1671372800 Total committed heap usage (bytes)=152834048 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=8548 File Output Format Counters Bytes Written=10161
上面你看到Linux,是因为我使用了conf.set("mapred.remote.os", "Linux"); 不过在实际运行的时候却不需要设置。
另外,如果是linux系统部署的tomcat调用hadoop2集群运行MR程序的话,应该不需要替换其jar吧的,这个还有待验证。
哈,总算搞定了。这个问题也算是困扰了我好久了,期间几次想要冲破,结果都是无果而归,甚是郁闷。额,其实这个也不算是原创了,哎,国外在02/Dec/13 18:35这个时间点就搞定了。不过,我搜了好久,都没有中文的相关介绍。(如果有的话,那就是我搜索能力的问题了,居然没有搜到,哎)。
分享,成长,快乐
转载请注明blog地址:http://blog.csdn.net/fansy1990