练习1.33
题目第二行描述,只组合起由给定范围得到的项里的那些满足特定条件的项,因此我们需要在这一版本的accumulate中添加一个need-filter?,这个新的谓词可以用来传递下面就要用到的prime?。
(define (filtered-accumulateneed-filter? combiner null-value term a next b)
(if (> a b)
null-value
(let ((other-term (filtered-accumulateneed-filter?
combiner
null-value
term
(nexta)
b)))
(if (need-filter? a)
other-term
(combiner (term a) other-term)))))
因此我们就可以通过accumulate来构造一个求a到b之间所有素数的和了。就像上一道题中将accumulate补充称product等一样,这里也是将抽象的filtered-accumulate添加一些固定的元素让它稍微”具体“点。a小题的函数也就出来了。
(define(accumulate-prime-sum a b)
(filtered-accumulate prime? + 0 (lambda (x)x) a (lambda (x) (+ x 1)) b))
编译这段函数的前提是你已经将prime?加载上来了。
其实解答b小题就是要写出一个能够判断互素的谓词,这里定为a-prime-to-b?。
(define (a-prime-to-b? a b)
(and (< a b) (= 1 (gcd a b))))
同样的,在这里也应该要将gcd函数加载上来。
类似于前面将need-to-filter?替换成prime?的过程,这里是用的谓词a-prime-to-b?。
(define (product-of –prime-accumulaten)
(filtered-accumulate (lambda (x) (a-prime-to-b?x n))
*
1
(lambda (x) x)
1
(lambda (x) (+ x 1))
n))
作为初学者,还是多做点实践好了,再来写出迭代版本的filtered-accumulate
我就不再将我对比的过程写下来了,大家可以翻到前面看看。
(define (filtered-accumulateneed-to-filter? combiner null-value term a next b)
(define (filtered-accumulate-iter a other)
(cond ((> a b) other)
((need-to-filter? a)
(filtered-accumulate-iter (nexta) (combiner (term a) other)))
(else
(filtered-accumulate-iter (nexta) other))))
(filtered-accumulate a null-value))
这道题我们就这样写完了,接下来我们会开始着重学习lambda了。虽然前面用过不少,但要想灵活运用lambda则比较难了。个人理解,lambda就像是C语言中的指针,灵活运用则威力强大。