- 【面试宝典】10道数据仓库高频题整理(附答案背诵版)
想念@思恋
面试宝典数据仓库面试数据仓库职场和发展
1.简述数据仓库架构?数据仓库架构是数据仓库系统的基础结构,它定义了数据从来源到最终用户如何流动和转换的过程。数据仓库架构通常包括以下几个主要部分:数据源:数据源可以是各种类型的系统,如关系数据库、文件系统或在线事务处理系统。这些源头包含了企业运营中产生的原始数据。数据抽取、转换和加载(ETL):这是数据仓库的核心部分。数据从原始数据源抽取出来,经过清洗(去除不一致性和错误)、转换(转换为适合分析
- 基于Uniapp+SpringBoot实现微信小程序授权登录
请你喝杯Java
微信小程序开发指南前端之旅1024程序员节微信小程序交互springboot小程序
手把手教你做微信小程序授权登录交互一、uni.login请求临时code二、uni.request向后台交换数据三、源代码前台:在GetUserInfo中添加接口后台:SpringBoot后台数据处理四、实现效果开发需求:我们团队在开发微信小程序过程中,需要绑定微信用户的信息到数据库里,那么就需要获得用户的唯一标识openid,而微信为了安全,是禁止小程序直接访问该接口,因此我们不能直接拿到用户的
- MySQL优化之SQL调优策略
零度可乐不加冰
sqljava数据库
首先以一张思维导图从全局上给大家分享以下几种SQL优化策略,再详细讲解1、避免使用SELECT*在阿里的编码规范中也强制了数据库查询不能使用SELECT*,因为SELECT*方式走的都是全表扫描,导致的结果就是查询效率非常低下,其原因为当我们使用SELECT*方式时,SQL会有一个格式化的阶段,这个阶段会将所有表字段都取出(将*号解析成表的各个字段),增加了查询解析器的成本2、小表驱动大表小表驱动
- 数据仓库基础常见面试题
兔子宇航员0301
数据开发小白成长笔记数据仓库spark大数据
1.数据仓库是什么数据仓库(DataWarehouse)是一个面向主题的、集成的、非易失的、随时间变化的数据集合,用于支持企业的管理决策。它不同于传统的操作型数据库,后者主要用于处理日常业务交易和实时查询,而数据仓库则侧重于对历史数据的整合、分析和挖掘2.数据仓库和数据库有什么区别数据来源和处理方式不同:数据库通常用于存储、管理和查询交易数据,而数据仓库则是用于处理分析性查询的数据。数据仓库通
- 基于RBF神经网络的在线学习算法
fanxbl957
人工智能理论与实践神经网络学习算法
基于RBF神经网络的在线学习算法一、引言随着信息技术的飞速发展,数据的产生速度日益加快,传统的批量学习算法在处理大规模、实时更新的数据时面临着诸多挑战。在线学习算法作为一种可以实时更新模型的学习方式,逐渐受到广泛关注。RBF(径向基函数)神经网络作为一种强大的神经网络模型,以其良好的函数逼近能力和非线性处理能力,为在线学习提供了一种有效的工具。本文将深入探讨基于RBF神经网络的在线学习算法,包括其
- 2024年大数据最全数据仓库|数据库面试题总结_面试题 数据仓库
2301_82243558
程序员大数据数据仓库数据库
这里值得注意的是不要想着为每个字段建立索引,因为优先使用索引的优势就在于其体积小。索引有哪几种类型?主键索引:数据列不允许重复,不允许为NULL,一个表只能有一个主键。唯一索引:数据列不允许重复,允许为NULL值,一个表允许多个列创建唯一索引。可以通过ALTERTABLEtable_nameADDUNIQUE(column);创建唯一索引可以通过ALTERTABLEtable_nameADDUNI
- Open AI GPT大模型深度解析:通往智能的里程碑
xziyuan
人工智能gpt
大模型——OpenAIGPT大模型介绍人工智能技术的快速发展引发了对智能系统和应用的巨大需求。多模态大模型已经成为了人工智能领域的重要研究方向之一。OpenAI作为一家全球领先的人工智能公司,在推动人工智能技术的边界上发挥着重要作用,其在大模型方面的研究和应用也是一直处于领先地位。本文将介绍OpenAI多模态大模型的研究成果和应用,探讨其在人工智能领域的重要性和影响力,以及给世界带来的可能性。1.
- # AI计算模式 神经网络模型 深度神经网络 多层感知机 卷积神经网络 循环神经网络 长短期记忆网络 图像识别、语音识别、自然语言 轻量化模型和模型压缩 大模型分布式并行
EwenWanW
AGI人工智能神经网络dnn
AI计算模式AI技术发展至今,主流的模型是深度神经网络模型。近20年来,神经网络模型经过多样化的发展,模型总体变得越来越复杂和庞大,对硬件设备的计算速度、存储能力、通信速度的要求越来越高。尽管学者已经提出了许多方法优化模型结构,降低模型的参数量,但是伴随着人们对AI能力的要求越来越高,模型变得更大是不可避免的。原先单CPU可进行模型的训练与推理,如今需要使用GPU、TPU等设备,并通过分布式并行的
- LLaMA Pro是什么 相比于lora full freeze有什么区别 怎么使用
Ven%
简单说深度学习深度学习基础动手深度学习速通系列llamatransformer深度学习人工智能
1.LLaMAPro是什么?LLaMAPro是一种基于LLaMA架构改进的大型语言模型(LLM),旨在解决大模型微调中的知识遗忘问题。它通过在原有模型的基础上扩展新的模块(如Transformer块),并在微调时仅训练这些新增模块,从而在适应新任务的同时保留预训练模型的通用知识。LLaMAPro在代码理解、数学推理和语言理解等任务上表现出色,特别适合需要持续学习和多任务处理的场景。2.LLaMAP
- 【vLLM 学习】使用 OpenVINO 安装
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/由OpenVINO驱动的vLLM支持来自vLLM支持的模型列表中的所有LLM模型,并且可以在所有x86-64CPU上(至少需要AVX2支持)进行最佳的模型服务。OpenVINO的vLLM后端支持以下高级vLLM特性:前
- 梯度提升决策树树(GBDT)公式推导
化作星辰
决策树算法机器学习
###逻辑回归的损失函数逻辑回归模型用于分类问题,其输出是一个概率值。对于二分类问题,逻辑回归模型的输出可以表示为:\[P(y=1|x)=\frac{1}{1+e^{-F(x)}}\]其中\(F(x)\)是一个线性组合函数,通常表示为:\[F(x)=\sum_{m=0}^{M}h_m(x)\]这里的\(h_m(x)\)是学习到的决策树。###损失函数的推导对于单个样本\((x_i,y_i)\),逻
- fit_transform,fit,transform区别和作用
浊酒南街
#机器学习深度学习人工智能
目录前言fit,transform,fit_transform函数介绍函数使用示例前言sklearn中封装的各种算法调用之前都要fit。fit相对于整个代码而言,为后续API服务,用于从一个训练集中学习模型参数,包括归一化时要用到的均值,标准偏差。fit之后,可以调用各种API方法,transform是其中之一。所以当你调用transform之外的方法,也必须要先fit。但是fit与transfo
- Mock 单元测试详细
one996
c#.net单元测试
介绍在单元测试中,Mock是一种模拟依赖对象行为的技术,主要用于隔离待测试对象(SUT:SystemUnderTest)与其依赖项(通常是接口、类或外部系统)。这样,我们可以专注于测试目标代码的逻辑,而不需要考虑其依赖项的实现细节或副作用。为什么使用Mock?隔离测试:使测试代码仅专注于目标逻辑,而不受外部依赖的影响。提高效率:无需初始化真实的依赖对象(如数据库、API服务等)。简化外部依赖的复杂
- sql里面的asc和desc排序原理
one996
记录程序员sql
最近遇到一个数据库的问题,sql语句是对版本进行降序排列。如下例子:用下载sql去查询,没有排序的效果。SELECT*FROMdata2WHEREpn=''ANDwsid=''ANDorder_ork=''ORDERBY'tpver'desc如下两个版本V3.7.2-R1.0Z1.3.1V3.11-R9.0Z1.4因为desc的排序方式是hashcode,按照我的理解,应该是从R开始比较,R3相等
- 更新 Django 3.2 解决 DEFAULT_AUTO_FIELD warnings
sunjl_a
djangoweb开发djangopythonmigration
当您在Django中定义一个没有指定主键的model时,Django将自动为您创建一个主键。主键设置为整数类型(integer)。如果要覆盖该字段类型,可以在每个模型(model)的基础上执行此操作。从Django3.2开始,您现在可以在您的设置(settings)中自定义自动创建的主键的类型。在Django3.2中开始新项目时,主键的默认类型设置为BigAutoField,这是一个64位整数(6
- nutzboot框架入门
优人qaq
spring
引言NutzBoot是基于Nutz框架开发的一款轻量级、高效的JavaWeb开发脚手架,它旨在简化JavaWeb应用的开发与部署流程,为开发者提供便捷、高效的开发体验。核心特性自动配置:NutzBoot具备类似于SpringBoot的自动配置功能。它能够依据项目的依赖和配置,自动完成各类组件的初始化与配置。例如,若项目中添加了数据库相关依赖,NutzBoot会自动配置数据源和数据库连接池,极大减少
- CSGHub 快速部署指南
算法llm
CSGHub快速部署指南OmnibusCSGHub是OpenCSG推出的使用Docker快速部署CSGHub的一种方式,主要用于快速功能体验和测试。Docker部署方式允许用户以较低成本在本地计算机部署CSGHub。此种部署方法非常适合概念验证和测试,使用户能够立即访问CSGHub的核心功能(包括模型,数据集管理、Space应用创建以及模型的推理和微调(需要GPU))。本文将带您一步步完成部署。什
- 快手可灵视频生成大模型全方位测评
人工智能llm
快手视频生成大模型“可灵”(Kling),是全球首个真正用户可用的视频生成大模型,自面世以来,凭借其无与伦比的视频生成效果,在全球范围内赢得了用户的热烈追捧与高度评价。截至目前,申请体验其内测版的用户数量已突破70万大关,累计生成的视频作品更是高达700万。可灵在持续创新的道路上也从未停下脚步,在七月份举办的世界人工智能大会(WAIC)期间,可灵再次迎来重大升级。新功能包括上线web端、基础模型效
- ChatGPT
在多模态模型的架构上,ChatGPT的绘图能力主要依赖以下几个核心组件:跨模态编码器(Cross-ModalEncoder):跨模态编码器的作用是将文本和图像的特征进行对齐。GPT可以将用户输入的文本描述转换为文本特征表示,然后利用跨模态编码器将这些特征映射到图像特征空间。这种方式确保模型能够理解描述性语言中不同细节是如何与图像特征对应的。
- 深入详解神经网络的基础知识、工作原理以及应用【一】
猿享天开
人工智能基础知识学习深度学习神经网络人工智能
目录引言1.神经网络基础1.1感知器模型1.2多层感知器(MLP)示例:2.前馈神经网络(FeedforwardNeuralNetworks,FFNN)2.1结构与特点2.2训练过程2.3优化方法3.卷积神经网络(CNN)3.1基本概念3.2层类型3.3网络架构3.4应用领域3.5示例代码示例描述:4.循环神经网络(RNN)4.1基本概念4.2RNN结构4.3应用领域4.4示例代码示例描述:5.深
- 如何使用 Flask-Caching 提高性能?
Channing Lewis
Pythonflaskpython后端
在Flask中,使用Flask-Caching可以显著提高应用的性能,尤其是对于计算密集型操作、数据库查询或外部API调用。Flask-Caching通过存储数据的副本减少重复计算,从而加快响应速度。1.安装Flask-Caching首先,安装Flask-Caching:pipinstallFlask-Caching2.配置Flask-Caching在Flask应用中,配置缓存类型和参数,例如使用
- 每日论文推荐:我们距离GPT-4V有多远,最接近GPT-4V的开源多模态大模型
linxid
openopenaiGPT-5多模态大模型上海上海AI人工智能
元数据概览:标题:HowFarAreWetoGPT-4V?ClosingtheGaptoCommercialMultimodalModelswithOpen-SourceSuites作者:ZheChen,WeiyunWang,HaoTian,ShenglongYe,ZhangweiGao,ErfeiCui,WenwenTong,KongzhiHu,JiapengLuo,ZhengMa,JiMa,J
- 在 ASP.NET Core 6.0 Web API 中将 Excel 文件数据上传并保存到数据库中
csdn_aspnet
Net6.0excel数据库.Net6.0webapi
本文示例代码:https://download.csdn.net/download/hefeng_aspnet/90174856本文将探讨使用ASP.NETCoreWebAPI上传Excel文件并将其数据保存到数据库的分步过程。我们将利用NPOI库和EntityFrameworkCore来实现此功能。安装所需的库首先,我们必须从NuGet包管理器安装NPOI库:接下来,我们还将安装EntityFr
- swing之mvc模式
混魔MJM
Java网络编程JavamvcjavaSwing
1Swing与MVCSwing组件设计使用了著名的MVC模型-视图-控制器体系结构。为了了解MVC体系结构与Swing组件的关系,我们来看一下如何设计一个表示按钮的组件,因为按钮的各个部分可以与MVC体系结构的3个部分对应起来。按钮在任意给定时刻,可处于启用和无效两种状态之一。很显然,按钮只有处于启用状态时才会响应点击。记录按钮状态是很有用的,视图需要根据按钮的状态进行不同的渲染。按钮的所有状态就
- 8.2 从看图识字到智能解读:GPT-4 with Vision 开启多模态 AI 新纪元
少林码僧
AI大模型应用实战专栏人工智能chatgpt
从看图识字到智能解读:GPT-4withVision开启多模态AI新纪元引言:AI的多模态跃迁随着人工智能技术的快速发展,我们正迈入一个新的智能交互时代。传统的AI模型主要聚焦于文本处理,而多模态AI模型如GPT-4withVision(GPT-4V)则能够同时处理图像和文本。GPT-4V是OpenAI推出的多模态版本,它不仅能理解图片,还能结合文字对图片内容进行深入分析。这项技术为教育、创意、医
- 6. 马科维茨资产组合模型+政策意图AI金融智能体(DeepSeek-V3)增强方案(理论+Python实战)
AI量金术师
金融资产组合模型进化论人工智能金融python机器学习算法大数据数学建模
目录0.承前1.幻方量化&DeepSeek1.1Whatis幻方量化1.2WhatisDeepSeek2.重写AI金融智能体函数3.汇总代码4.反思4.1不足之处4.2提升思路5.启后0.承前本篇博文是对上一篇文章,链接:5.马科维茨资产组合模型+政策意图AI金融智能体(Qwen-Max)增强方案(理论+Python实战)的AI金融智能体更改为幻方量化DeepSeek-V3的尝试。唯一区别之处在于
- 视频行为分析系统,可做安全行为检测,比如周界入侵,打架
winxp-pic
音视频安全
基于视频行为分析系统v4系列版本可以在不用考虑流媒体音视频开发,编解码开发,界面开发等情况下,只需要训练自己的模型,开发自己的行为算法插件,就可以轻松开发出任何你想要的安全行为检测,比如周界入侵,打架,斗殴,跌倒,人群聚集,离岗睡岗,安全帽检测,充电桩,工作服,疲劳检测,交通拥堵等等。从v4.24版本开始,该软件已经支持Windows10,Windows11,Ubuntu20,Ubuntu21,U
- 【趣学SQL】第四章:高级 SQL 功能 4.1 触发器与存储过程——数据库的“自动机器人“和“万能工具箱“
精通代码大仙
数据库sqloracle
第四章:高级SQL功能4.1触发器与存储过程——数据库的"自动机器人"和"万能工具箱"欢迎来到「数据库魔法工坊」!今天我们将化身"SQL巫师",用一家虚拟咖啡店的会员系统崩溃案例,教你如何用触发器和存储过程打造自动化的数据流水线。☕️4.1.1触发器的基本概念——当数据库学会"条件反射"真实惨案:某咖啡店因人工操作失误导致:VIP会员充值100元,积分却未到账新用户注册未分配默认优惠券凌晨3点订单
- 自然语言处理的发展历程
数亦有术
自然语言处理人工智能
1.自然语言处理发展的7个阶段序号阶段时间贡献代表人物1起源期1913-1956思考使用图灵算法计量模型来描述自然语言,描述词语及词语之间的关系。这一阶段停留在理论层面做探索图灵、马尔可夫、香农2基于规则的形式语言理论期1957-1970形式语言理论的提出,开启了学术界对自然语言结构的研究、建模和解析,从而为基于结构与规则的文本识别、生成和翻译开辟了一条康庄大道诺姆·乔姆斯基、冯志伟3基于规则、概
- Node.js的解释
web15085415935
面试学习路线阿里巴巴node.js
1.Node.js入门教程1.1什么是Node.js?1.1.1Node.js是什么?Node.js是一个基于JavaScript的开源服务器端运行时环境,允许开发者用JavaScript编写服务器端代码。与传统的前端JavaScript主要运行在浏览器端不同,Node.js通过提供一个非阻塞的异步模型,允许开发者在服务器端创建高性能的网络应用程序。比喻:想象你把JavaScript看作是一个厨师
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo