- scaled_dot_product_attention实现逻辑
凤梧长宜放眼量
人工智能深度学习计算机视觉
torch.nn.functional.scaled_dot_product_attention(query,key,value,attn_mask=None,dropout_p=0.0,is_causal=False,scale=None,enable_gqa=False)->Tensor:参数:query(Tensor)–Querytensor;shape(batch_size,...,hea
- Gone 从 v1 到 v2 的更新分析
dapeng-大鹏
Gone框架介绍gone依赖注入后端框架
项目地址:https://github.com/gone-io/gone原文地址:https://github.com/gone-io/gone/blob/main/docs/gone-v1-to-v2-analysis.md文章目录1.概念简化与术语变更2.接口重新设计2.1组件定义的简化2.2组件加载方式的统一2.3生命周期方法的优化3.依赖注入逻辑重写3.1注入标签的简化3.2依赖注入查找流
- 【PyTorch】torch.nn.functional.log_softmax() 函数:计算 log(softmax),用于多分类任务
彬彬侠
PyTorch基础log_softmax多分类交叉熵损失分类pytorchpython深度学习
torch.nn.functional.log_softmaxtorch.nn.functional.log_softmax是PyTorch提供的用于计算log(softmax)的函数,通常用于多分类任务和计算交叉熵损失,可以提高数值稳定性并防止数值溢出。1.log_softmax的数学公式对于输入张量XXX,softmax计算如下:softmax(Xi)=eXi∑jeXj\text{softma
- 【PyTorch】torch.nn.functional.cross_entropy() 函数:分类任务的交叉熵损失函数
彬彬侠
PyTorch基础cross_entropy交叉熵损失函数分类pytorchpython深度学习
torch.nn.functional.cross_entropytorch.nn.functional.cross_entropy是PyTorch中用于分类任务的交叉熵损失函数,用于衡量预测概率分布与真实类别分布之间的差异,常用于多分类任务(multi-classclassification)。1.交叉熵损失的数学公式对于单个样本,交叉熵损失的计算公式为:L=−∑i=1Cyilog(yi^)\
- Analysis of QFN package bridging phenomenon and suggestions for improvement
px5213344
pcb工艺
1.OverviewofthebridgingphenomenonBridginginQFNpackagesisparticularlycommonbetweentheinnerrowsofsolderjointsindouble-rowQFNs,andrelativelyrareinsingle-rowQFNs.Bridgingoccurswhensolderispressedagainstan
- Common Solder Defects and Root Cause Analysis
px5213344
pcb工艺
Generalguidanceitiswellknownthat60-70%ofallsolderdefectscanbetracedbacktotheprintingdefectssuchassolderbridging,coldslumpandUnevenSolderPasteDepositwhilefinetuningthereflowprofiledobenefitandavoidsome
- ES 客户端 API 二次封装思想
bossface
项目服务器c++elasticsearch数据库
ES客户端API二次封装思想网页端:ip+5601索引创建数据新增数据查询数据删除因为json串会出现在代码中,为了让用户更容易去添加数据所以去封装它。思想:为了让json串变得更加容易添加,封装最主要是为了简化正文的构造过程POST/user/_doc//让用户可以指定索引名称指定索引类型{"settings":{//让用户添加"analysis":{"analyzer":{"ik":{"tok
- python anova_使用Python进行双向ANOVA的三种方法
cumei1658
python机器学习深度学习人工智能数据分析
pythonanovaInanearlierpostIshowedfourdifferenttechniquesthatenablestwo-wayanalysisofvariance(ANOVA)usingPython.Inthispostwearegoingtolearnhowtodotwo-wayANOVAforindependentmeasuresusingPython.在较早的文章中,我
- 【漫话机器学习系列】129.主成分分析(Principal Component Analysis,PCA)
IT古董
漫话机器学习系列专辑机器学习人工智能
主成分分析(PCA):降维与特征提取的强大工具1.什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,PCA)是一种常见的数据降维技术,主要用于将高维数据投影到低维空间,同时尽可能保留数据的主要信息。PCA通过线性变换,将原始特征变量转换为一组新的变量,这些新变量被称为主成分(PrincipalComponents)。在这张图中,我们可以看到PCA的核心概
- piv matlab,piv MATLAB中PIV源代码 - 下载 - 搜珍网
Rachel瑞小秋
pivmatlab
piv/piv/articross.matpiv/articross2.matpiv/autopass.mpiv/convf2.mpiv/definewoco.mpiv/EGU2009-13295.PDFpiv/fillmiss.mpiv/finalpass.mpiv/firstone_analysis.mpiv/firstpass.mpiv/fixdigim.mpiv/fq0107.mpiv/f
- SCI 1区2区3区图像处理期刊
Vertira
博士图像处理人工智能机器学习
一区1.IEEETRANSACTIONSONPATTERNANALYSISANDMACHINEINTELLIGENCE顶刊:是出版商:IEEE2.IEEETransactionsonMultimedia顶刊:是出版商:IEEE3.InformationFusion顶刊:是出版商:ELSEVIER4.IEEETRANSACTIONSONIMAGEPROCESSING顶刊:是出版商:IEEE5.KNO
- 数据挖掘|关联分析与Apriori算法详解
皖山文武
数据挖掘商务智能数据挖掘关联分析Apriori算法机器学习
数据挖掘|关联分析与Apriori算法1.关联分析2.关联规则相关概念2.1项目2.2事务2.3项目集2.4频繁项目集2.5支持度2.6置信度2.7提升度2.8强关联规则2.9关联规则的分类3.Apriori算法3.1Apriori算法的Python实现3.2基于mlxtend库的Apriori算法的Python实现1.关联分析关联规则分析(Association-rulesAnalysis)是数
- 【漫话机器学习系列】130.主成分(Principal Components)
IT古董
漫话机器学习系列专辑机器学习人工智能python
主成分(PrincipalComponents)详解1.什么是主成分?主成分(PrincipalComponents,PCs)是数据集中方差最大的线性组合,它是主成分分析(PrincipalComponentAnalysis,PCA)中的核心概念。主成分可以看作是对原始特征的新表述方式,它通过数学变换找到一组新的正交坐标轴,使得数据的主要变化方向与这些轴对齐。简单来说:主成分是数据集中信息量(方差
- 函数式编程
猫哥不给力
javascript前端函数式编程
什么是函数式编程函数式编程(FunctionalProgramming,FP),FP是编程范式之一,我们常听说的编程范式还有面向过程编程、面向对象编程。面向对象编程的思维方式:把现实世界中的事物抽象成程序世界中的类和对象,通过封装、继承和多态来演示事物事件的联系函数式编程的思维方式:把现实世界的事物和事物之间的联系抽象到程序世界(对运算过程进行抽象)程序的本质:根据输入通过某种运算获得相应的输出,
- MMDetection实用工具详解(上):日志分析、结果分析、混淆矩阵
MickeyCV
目标检测python深度学习linux目标检测
实用工具目录一、日志分析使用方法实际案例二、结果分析pkl结果文件生成使用方法实际案例三、混淆矩阵使用方法实际案例遇到的UserWarning解决方案MMDetection官方除了训练和测试脚本,他们还在mmdetection/tools/目录下提供了许多有用的工具。本帖先为大家重点介绍其中三个简单而实用的工具:日志分析、结果分析、混淆矩阵。一、日志分析tools/analysis_tools/a
- 拉格朗日插值多项式(Lagrange Interpolation)原理 + Python 代码
Illusionna.
python
原理部分见:拉格朗日插值—Homev1.2023.11文档https://illusionna.readthedocs.io/zh/latest/projects/Mathematics/Numerical%20Analysis/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E6%8F%92%E5%80%BC/Lagrange.html代码依赖第三方库:1.numpy2
- 基于PyTorch的深度学习5——神经网络工具箱
Wis4e
深度学习pytorch神经网络
可以学习如下内容:•介绍神经网络核心组件。•如何构建一个神经网络。•详细介绍如何构建一个神经网络。•如何使用nn模块中Module及functional。•如何选择优化器。•动态修改学习率参数。5.1核心组件神经网络核心组件不多,把这些组件确定后,这个神经网络基本就确定了。这些核心组件包括:1)层:神经网络的基本结构,将输入张量转换为输出张量。2)模型:层构成的网络。3)损失函数:参数学习的目标函
- Failed to configure a DataSource: ‘url‘ attribute is not specified and no embedded datasource could
clownAdam
JavaJavaspringboot
问题:SpringBoot启动类时报错信息如下:ErrorstartingApplicationContext.Todisplaytheconditionsreportre-runyourapplicationwith'debug'enabled.2025-03-1000:52:29.412ERROR36776---[main]o.s.b.d.LoggingFailureAnalysisRepor
- 【自然语言处理-NLP】情感分析与主题建模
云博士的AI课堂
深度学习哈佛博后带你玩转机器学习自然语言处理人工智能情感分析主题建模深度学习机器学习NLP
以下内容详细剖析了NLP中情感分析(SentimentAnalysis)和主题建模(TopicModeling)的技术与方法,分别展示如何从文本中提取情感倾向和潜在主题,并提供示例代码和讲解,可在Python环境下直接运行。目录情感分析(SentimentAnalysis)1.1概念与方法概览1.2传统机器学习方法1.3深度学习与预训练模型1.4代码示例:基于机器学习的情感分类主题建模(Topic
- 【17】 傅立叶分析
技术与健康
Excel数据分析与模拟决策线性回归excel数据分析
傅立叶分析(FourierAnalysis)是Excel数据分析工具库中的一种方法,用于将时间序列数据分解为不同频率的正弦波(sinusoidalcomponents)。它特别适用于分析周期性数据或信号处理,帮助用户发现数据中的周期性模式、频率成分及其幅度。傅立叶变换将复杂的时间序列数据转化为频域数据,这意味着它能把数据分解为不同频率的波形,这在物理、金融市场、工程信号处理中有广泛的应用。傅立叶分
- 社会科学市场博弈和价格预测之时间序列挖掘(Datawhale AI 夏令营)
会飞的Anthony
人工智能人工智能
深入理解赛题——探索性数据分析首先,我们先介绍一下什么是EDA:探索性数据分析(ExploratoryDataAnalysis,EDA)是一组数据分析技术,旨在总结其主要特征,通常通过可视化手段来实现。EDA的目标是通过数据的统计摘要和图形展示来发现数据的结构、异常值、模式、趋势、关系以及变量之间的相互作用。为什么进行EDA?在现在的数据挖掘类比赛中,模型和方法选择空间往往很小,同时存在不少自动机
- 2025开源SCA工具推荐 | 组件依赖包安全风险检测利器
DevSecOps选型指南
开源安全开源治理openSCA软件成分分析
软件成分分析(SoftwareCompositionAnalysis,SCA)是Gartner定义的一种应用程序安全检测技术,该技术用于分析开源软件以及第三方商业软件涉及的各种源码、模块、框架和库等,以识别和清点开源软件的组件及其构成和依赖关系,并检测是否存在已知的安全和功能漏洞、安全补丁是否已经过时或是否存在许可证合规或兼容性风险等安全问题,帮助确保企业软件供应链中组件的安全。OpenSCA是国
- Fine-grained Analysis of Stability and Generalization for Stochastic Bilevel Optimization
再给一碗吧
已发表论文分享机器学习理论知识泛化理论双层优化
论文《Fine-grainedAnalysisofStabilityandGeneralizationforStochasticBilevelOptimization》IJCAI’2024《随机双层优化的细粒度稳定性和泛化性分析》会议介绍IJCAI(InternationalJointConferenceonArtificialIntelligence,国际人工智能联合会议)是人工智能领域的一个主
- ARE 132: Cooperative Business Enterprises
后端
ARE132:CooperativeBusinessEnterprisesFinalProject:CaseStudyofCooperativeBusinessEnterprisesLearningobjectives:Thisprojectallowsyoutoapplythematerialcoveredthroughoutthequarterinananalysisofanexistingc
- R语言绘图:韦恩图
善木科研
R语言r语言生信分析生物信息数据分析
韦恩分析韦恩分析(VennAnalysis)常用于可视化不同数据集之间的交集和并集。维恩图(Venndiagram),也叫文氏图、温氏图、韦恩图、范氏图,用于显示元素集合重叠区域的关系型图表,通过图形与图形之间的层叠关系,来反应数据集之间的相交关系。在R语言中,进行韦恩分析(Venn图绘制)可以通过多个不同的包来实现,常用的包括VennDiagram、venn和ggVenn等。本文案使用ggVen
- 出现User 1055 - Expression #2 of SELECT list is not in GROUP BY clause and contains nonaggregated 解决方法
码农研究僧
BUGMysqlgroupbyBug
目录1.问题所示2.原理分析3.解决方法1.问题所示执行Sql的时候,出现如下问题1055-Expression#2ofSELECTlistisnotinGROUPBYclauseandcontainsnonaggregatedcolumn'easy-admin.students.age'whichisnotfunctionallydependentoncolumnsinGROUPBYclause
- EMET8002 Case Studies in Applied Economic
后端
EMET8002CaseStudiesinAppliedEconomicAnalysisandEconometricsSemester12025ComputerLabinWeek3Question1:SimpleLinearRegressionDownloadthe“states”datafromWattleandopenitinStata.Aspartofthisquestionweexplor
- mybatis-plus和mapper.xml混合传参
weixin_li152********
mybatisxmljava
xml,这是一个复杂的统计sql(部份删减)select*from(selecthost,host_sec,count(*)numsfromtableandtype=#{type}GROUPBY`host`,host_sec)a${ew.customSqlSegment}daoListanalysis(@Param(Constants.WRAPPER)Wrapperwrapper,@Param("
- 探秘BirdWatch:实时推文可视化利器
宋韵庚
探秘BirdWatch:实时推文可视化利器BirdWatchTweetstreamanalysisandvisualizationwithreal-timeupdates.项目地址:https://gitcode.com/gh_mirrors/bi/BirdWatchBirdWatch是一款基于Web的响应式应用,专为实时展示和分析推文流而设计。它最初是一个实验平台,用于探索解决同一问题的不同方法
- 图像识别技术与应用课后总结(12)
一元钱面包
人工智能
全局平均池化(GlobalAveragePooling)1.导入库和设备配置importtorch.nnasnnimporttorch.nn.functionalasFdevice=torch.device("cuda:0"iftorch.cuda.is_available()else"cpu")-importtorch.nnasnn:导入PyTorch的神经网络模块,用于构建神经网络层。-imp
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟