Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
这是一道动态规划的题目,求一个三角形二维数组从顶到低端的最小路径和。
我们从低端向顶端计算。设状态为 S[i][j]表示从从位置 ( i, j ) 出发,到最低端路径的最小和
状态转移方程:
S[i][j] = min(S[i+1][j] + S[i+1][j+1]) +S[i][j]
S[0][0]就是要求解的答案。
时间复杂度 O(n^2) ,空间复杂度 O(1)
/**------------------------------------ * 日期:2015-02-03 * 作者:SJF0115 * 题目: 120.Triangle * 网址:https://oj.leetcode.com/problems/triangle/ * 结果:AC * 来源:LeetCode * 博客: ---------------------------------------**/ #include <iostream> #include <vector> #include <algorithm> using namespace std; class Solution { public: int minimumTotal(vector<vector<int> > &triangle) { int size = triangle.size(); // down-to-top // 第i层 for(int i = size - 2;i >= 0;--i){ // 第i层的第j个元素 for(int j = 0;j <= i;++j){ triangle[i][j] += min(triangle[i+1][j],triangle[i+1][j+1]); }//for }//for return triangle[0][0]; } }; int main(){ Solution s; vector<vector<int> > triangle = {{2},{3,4},{6,5,3},{4,1,8,3}}; int result = s.minimumTotal(triangle); // 输出 cout<<result<<endl; return 0; }
一位网友说:虽然是O(1)的空间复杂度,但其实破坏了三角形本身啊。如果算上占用的三角形本身的空间,实际使用的空间复杂度应该算O(N^2)了。
只求值不求本身的时候,都是可以用空间轮转这个办法的。如LCS、走棋盘等等一批问题,都可以这么节省。
从上面思路的状态转移方程中看出:S[i][j] = min(S[i+1][j] + S[i+1][j+1]) +S[i][j]
S[i][j]只与下一行的第j个元素和第j+1个元素相关,i的关系是固定的,因此我们可以省去这一维。
开辟O(N)的数组,然后规划的时候使用S[j] = min(S[j+1], S[j) +Triangle[i][j]就可以了。
/*------------------------------------ * 日期:2015-02-03 * 作者:SJF0115 * 题目: 120.Triangle * 网址:https://oj.leetcode.com/problems/triangle/ * 结果:AC * 来源:LeetCode * 博客: ---------------------------------------*/ class Solution { public: int minimumTotal(vector<vector<int> > &triangle) { int size = triangle.size(); vector<int> next(triangle.back()); // down-to-top // 第i层 for(int i = size - 2;i >= 0;--i){ // 第i层的第j个元素 for(int j = 0;j <= i;++j){ next[j] = min(next[j],next[j+1]) + triangle[i][j]; }//for }//for return next[0]; } };