之前运行haar特征的adaboost算法人脸检测一直出错,加上今天的HOG&SVM行人检测程序,一直报错。
今天总算发现自己犯了多么白痴的错误——是因为外部依赖项lib文件没有添加完整,想一头囊死啊
做程序一定要心如止水!!! 仔细查找!!!
1.人脸识别程序:
#include "cv.h" #include "highgui.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <math.h> #include <float.h> #include <limits.h> #include <time.h> #include <ctype.h> using namespace std; static CvMemStorage* storage = 0; static CvHaarClassifierCascade* cascade = 0; void detect_and_draw( IplImage* image ); const char* cascade_name = "G:/OpenCV2.3.1/data/haarcascades/haarcascade_frontalface_alt.xml"; /* "haarcascade_profileface.xml";*/ int main() { CvCapture* capture = 0; cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 ); if( !cascade ) { fprintf( stderr, "ERROR: Could not load classifier cascade/n" ); //fprintf( stderr, //"Usage: facedetect --cascade=/"<cascade_path>"/[filename|camera_index]/n" ); return -1; } storage = cvCreateMemStorage(0); cvNamedWindow( "result", 1 ); const char* filename = "H:/test/face05.jpg"; IplImage* image = cvLoadImage(filename ); if( image ) { detect_and_draw( image ); cvWaitKey(0); cvReleaseImage( &image ); } cvDestroyWindow("result"); cvWaitKey(0); return 0; } void detect_and_draw( IplImage* img ) { static CvScalar colors[] = { {{0,0,255}}, {{0,128,255}}, {{0,255,255}}, {{0,255,0}}, {{255,128,0}}, {{255,255,0}}, {{255,0,0}}, {{255,0,255}} }; double scale = 1.3; IplImage* gray = cvCreateImage( cvSize(img->width,img->height), 8, 1 ); IplImage* small_img = cvCreateImage( cvSize( cvRound (img->width/scale), cvRound (img->height/scale)), 8, 1 ); int i; cvCvtColor( img, gray, CV_BGR2GRAY ); cvResize( gray, small_img, CV_INTER_LINEAR ); cvEqualizeHist( small_img, small_img ); cvClearMemStorage( storage ); if( cascade ) { double t = (double)cvGetTickCount(); CvSeq* faces = cvHaarDetectObjects( small_img, cascade, storage, 1.1, 2, 0/*CV_HAAR_DO_CANNY_PRUNING*/, cvSize(30, 30) ); t = (double)cvGetTickCount() - t; printf( "detection time = %gms/n", t/((double)cvGetTickFrequency()*1000.) ); for( i = 0; i < (faces ? faces->total : 0); i++ ) { CvRect* r = (CvRect*)cvGetSeqElem( faces, i ); CvPoint center; int radius; center.x = cvRound((r->x + r->width*0.5)*scale); center.y = cvRound((r->y + r->height*0.5)*scale); radius = cvRound((r->width + r->height)*0.25*scale); cvCircle( img, center, radius, colors[i%8], 3, 8, 0 ); } } cvShowImage( "result", img ); cvReleaseImage( &gray ); cvReleaseImage( &small_img ); }
2.行人检测程序
#include <cv.h> #include <highgui.h> #include <string> #include <iostream> #include <algorithm> #include <iterator> #include <stdio.h> #include <string.h> #include <ctype.h> using namespace cv; using namespace std; void help() { printf( "\nDemonstrate the use of the HoG descriptor using\n" " HOGDescriptor::hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());\n" "Usage:\n" "./peopledetect (<image_filename> | <image_list>.txt)\n\n"); } int main(int argc, char** argv) { Mat img; FILE* f = 0; char _filename[1024]; if( argc == 1 ) { printf("Usage: peopledetect (<image_filename> | <image_list>.txt)\n"); return 0; } img = imread(argv[1]); if( img.data ) { strcpy(_filename, argv[1]); } else { f = fopen(argv[1], "rt"); if(!f) { fprintf( stderr, "ERROR: the specified file could not be loaded\n"); return -1; } } HOGDescriptor hog; hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());//得到检测器 namedWindow("people detector", 1); for(;;) { char* filename = _filename; if(f) { if(!fgets(filename, (int)sizeof(_filename)-2, f)) break; //while(*filename && isspace(*filename)) // ++filename; if(filename[0] == '#') continue; int l = strlen(filename); while(l > 0 && isspace(filename[l-1])) --l; filename[l] = '\0'; img = imread(filename); } printf("%s:\n", filename); if(!img.data) continue; fflush(stdout); vector<Rect> found, found_filtered; double t = (double)getTickCount(); // run the detector with default parameters. to get a higher hit-rate // (and more false alarms, respectively), decrease the hitThreshold and // groupThreshold (set groupThreshold to 0 to turn off the grouping completely). hog.detectMultiScale(img, found, 0, Size(8,8), Size(32,32), 1.05, 2); t = (double)getTickCount() - t; printf("tdetection time = %gms\n", t*1000./cv::getTickFrequency()); size_t i, j; for( i = 0; i < found.size(); i++ ) { Rect r = found[i]; for( j = 0; j < found.size(); j++ ) if( j != i && (r & found[j]) == r) break; if( j == found.size() ) found_filtered.push_back(r); } for( i = 0; i < found_filtered.size(); i++ ) { Rect r = found_filtered[i]; // the HOG detector returns slightly larger rectangles than the real objects. // so we slightly shrink the rectangles to get a nicer output. r.x += cvRound(r.width*0.1); r.width = cvRound(r.width*0.8); r.y += cvRound(r.height*0.07); r.height = cvRound(r.height*0.8); rectangle(img, r.tl(), r.br(), cv::Scalar(0,255,0), 3); } imshow("people detector", img); int c = waitKey(0) & 255; if( c == 'q' || c == 'Q' || !f) break; } if(f) fclose(f); return 0; }
注意:可能会出现tbb_debug.dll的问题,在G:\OpenCV2.3.1\build\common\tbb\ia32\vc10中找到tbb.dll改名为tbb_debug.dll 加到程序绝对目录下即可
还有其他的解决方式:http://blog.csdn.net/scut1135/article/details/7329398